Search:

Схеми застосування інтеграла до знаходження геометричних і фізичних величин

Реферати » Математика » Схеми застосування інтеграла до знаходження геометричних і фізичних величин

План

Визначення та обчислення об’єму тіла

Обчислення об’єму тіла за площами його поперечних перерізів

Обчилення об’єму тіла обертання

Обчислення об’ємів

1.Обчислення об’єму тіла за його за площами

поперечних перерізів

На рис. 10.5 задано тіло, що обмежене зверху поверхнею , а також площинами , , , .

Нехай треба визначити будь-яку площу перерізу тіла

площиною, перпендикулярною до осі . Виділимо в тілі частинку, одержану двома паралельними перерізами, віддаленими один від одного на величину .Тоді об’єм виділеної частини

Інтегруючи, отримаємо

(10.5)

Рис.10.5 Рис.10.6

2. Об’єм тіла обертання

Нехай фігура (рис.10.6) обертається навколо осі . У результаті утвориться тіло обертання. Знайдемо його об’єм. Для цього виділимо смужку шириною . Його висоту можна взяти такою, що дорівнює. У результаті обертання фігури навколо осі смужка опише циліндричне тіло висотою з радіусом основи . Його об’єм Після інтегрування отримаємо

(10.6)

Приклад 1. Гіперболічний циліндр перетнутий двома площинами, з яких перша перпендикулярна до твірної, а друга проходить через фокус гіперболи перетину циліндра першою площиною так, що лінія її перетину з першою площиною перпендикулярна до осі гіперболи і утворює кут з першою площиною (рис. 10.7). Знайти об’єм гіперболічного відрізка , якщо відстань від фокуса гіперболи до її найближчої вершини дорівнює

2 м, а довжина перпендикулярного до її осі відрізка , що з’єднує дві точки гіперболи і проходить через фокус, дорівнює 10 м .

Р о з в ‘ я з о к. Нехай відрізок

м,м, фокус гіперболи , – одна з віток гіперболи. Позначимо , . Тоді точка матиме координати

Отже рівняння гіперболи буде таким:

Підставивши сюди координати точки і, враховуючи, що , одержимо таку систему рівнянь для визначення і :

Перейти на сторінку номер:
 1  2 


Подібні реферати:

Дії з векторами

Означення 5. Сумою двох векторів та називають вектор , який сполучає початок вектора з кінцем вектора при умові, що початок вектора вміщено в кінець вектора . Наприклад, задані вектори та (мал. 6а). Для побудування суми цих векторів перенесли паралельно самому собі, в його кінець вмістили початок вектора та сполучили початок вектора з кінцем вектора (Мал. 6b). а) b) Мал.6 Суму кількох векторів , , … , визначають аналогічно: початок кожного слідуючого вектора вміщують в кінець попереднього. Одержують ламану лінію і тоді ...

Інтеграл Ейлера

(1)   Функція досягає свого найбільшого значення 1 при t = 0. Отже, при t > 0 і t < 0. Беручи t = ±х2, дістаємо: звідки (2) (3) Підносячи вирази (63) і (64) до степеня з будь-яким натураль­ним показником n, маємо: (4) (5) Інтегруючи нерівність (65) на проміжку від 0 до 1, а нерівність (6) — від 0 до +, дістаємо: . Водночас виконуються такі співвідношення: 1) ; 2) ; 3) . Звідси Підносячи до квадрата і перетворюючи вираз (67), дістаємо: .(7) Із формули Вілліса випливає, що обидва крайні вирази у (68) при п ...

Числові послідовності. Границя, основні властивості границь. Нескінченно малі і нескінченно великі величини, їх властивості

План Числова послідовність. Означення границі числової послідовності. Основні теореми про границі. Обчислення деяких границь. Монотонні послідовності. Число е. Верхня та нижня границя. Функціональна послідовність критерій Коші. Уявімо собі натуральний ряд чисел. Зіставимо з довільним числом n відповідно з деяким правилом аn. Упорядкований набір чисел а1, а2, ... аn називається числовою послідовністю. Задати числову послідовність означає задати закон, за яким кожному натуральному n ставиться у відповідність єдине цілком ...