Search:

Інтерполяція

Реферати » Математика » Інтерполяція

План

Інтерполяція

Інтерполяційна формула Лагранжа

Інтерполяційна формула Ньютона

13.16. Інтерполювання функцій

Нехай відомі числові значення деякої величини , які відповідають числовим значенням величини /вузли інтерполювання /. Вважаючи функцією від , складемо таблицю із цих чисел:

Такі таблиці виникають на практиці в результаті дослідів, які проводяться над величиною ; але їх складають і для аналітично заданих функцій : таблиці квадратів та кубів чисел, таблиці логарифмів, таблиці тригонометричних функцій і т.п.

Часто виникає потреба в ущільненні таблиць, тобто в обчисленні проміжних значень , відсутніх в таблиці, задовольнившись при цьому лише наявним запасом табличних значень цієї величини . Також буває потрібним знайти на базі таблиці аналітичний вираз деякої функції , яка набувала б табличних значень за табличних значень . Звичайно, за беруть многочлен степеня , що має таку властивість (інтерполюючий многочлен).

Ознайомимося з деякими методами інтерполювання.

13.16.1. Інтерполяційна формула Лагранжа

Інтерполяційний многочлен запишемо у вигляді:

Для знаходження невизначених коефіцієнтів будемо покладати в цій рівності по черзі вимагаючи при цьому, щоб

Тоді одержуємо

Підставивши знайдені значення коефіцієнтів у вираз інтерполяційного многочлена, одержимо інтерполяційну формулу Лагранжа:

Поклавши в цю формулу , що дорівнює потрібному нам проміжному (нетабличному) значенню, одержуємо відповідне проміжне (нетабличне) значення . За табличних значень маємо відповідні табличні значення .

13.16.2. Інтерполяційна формула Ньютона

Перейти на сторінку номер:
 1  2  3 


Подібні реферати:

Диференціальні рівняння першого порядку. Задача Коші

План Вступні відомості про диференціальні рівняння Задачі геометричного і фізичного характеру, що приводять до диференціальних рівнянь Диференціальні рівняння першого порядку Задача Коші Геометрична інтерпретація диференціального рівняння першого порядку 12. ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ 12.1. Вступні відомості про диференціальні рівняння Звичайним диференціальним рівнянням називається рівняння, яке зв’язує незалежну змінну , невідому функцію та її похідні. Найвищий порядок похідної від шуканої функції, що входить в ...

Задачі нелінійного програмування

У задачах лінійного програмування, які розглядалися раніше, всі невідомі входили як до системи обмежень, так і до цільової функції, у першому степені. Тому ці задачі були досить простими у постановці і за методами розв'язування. Зрозуміло, що ряд економічних задач допускають такі ма­тематичні моделі, до яких невідомі або деяка їх частина вхо­дять нелінійно. Наприклад, нехай критерієм оптимальності є собівартість одиниці виробленої продукції. Очевидно, що вона залежить від розміру підприємства. Так, із збільшен­ням ...

Комплексні числа

При вивчення математики ми багато раз зустрічаємося з ідеэю розширення множини дійсних чисел .Наше представлення про число змінюється по мірі розширення кругу задач, які необхідно розв’язувати .Якщо для рахунку окремих предметів нам досить натуральних чисел, то, наприклад, для розв’язування рівнянь px+q=0, де p є N і q є N, натуральних чисел мало потрібні раціональні числа. В свою чергу раціональні чисел виявляється не досить для вимірювання довжини відрізків. Щоб довільному відрізку можна було надати довжини, необхідно ...