Search:

Інтерполяція

Реферати » Математика » Інтерполяція

План

Інтерполяція

Інтерполяційна формула Лагранжа

Інтерполяційна формула Ньютона

13.16. Інтерполювання функцій

Нехай відомі числові значення деякої величини , які відповідають числовим значенням величини /вузли інтерполювання /. Вважаючи функцією від , складемо таблицю із цих чисел:

Такі таблиці виникають на практиці в результаті дослідів, які проводяться над величиною ; але їх складають і для аналітично заданих функцій : таблиці квадратів та кубів чисел, таблиці логарифмів, таблиці тригонометричних функцій і т.п.

Часто виникає потреба в ущільненні таблиць, тобто в обчисленні проміжних значень , відсутніх в таблиці, задовольнившись при цьому лише наявним запасом табличних значень цієї величини . Також буває потрібним знайти на базі таблиці аналітичний вираз деякої функції , яка набувала б табличних значень за табличних значень . Звичайно, за беруть многочлен степеня , що має таку властивість (інтерполюючий многочлен).

Ознайомимося з деякими методами інтерполювання.

13.16.1. Інтерполяційна формула Лагранжа

Інтерполяційний многочлен запишемо у вигляді:

Для знаходження невизначених коефіцієнтів будемо покладати в цій рівності по черзі вимагаючи при цьому, щоб

Тоді одержуємо

Підставивши знайдені значення коефіцієнтів у вираз інтерполяційного многочлена, одержимо інтерполяційну формулу Лагранжа:

Поклавши в цю формулу , що дорівнює потрібному нам проміжному (нетабличному) значенню, одержуємо відповідне проміжне (нетабличне) значення . За табличних значень маємо відповідні табличні значення .

13.16.2. Інтерполяційна формула Ньютона

Перейти на сторінку номер:
 1  2  3 


Подібні реферати:

Теорія імовірностей та математична статистика

Теоретичні відомості: Набір експерементальних даних будем позначатиx, …,x. Однорідний набір спостережень називається вибіркою з генеральної сукупності. Генеральна сукупність - універсальна множина значень(проявів) цього явища. Кількість елементів вибірки називають об'ємом вибірки. Вибіркові значення називають ще й статистичним розподілом, якщо їх спеціальним чином перетворити. З однієї генеральної сукупності можна отримати різні вибірки, тому вибірку називають статистичною змінною, які в свою чергу бувають: дискретними ...

Інтегровані типи д-р 1-го порядку, розвязаних відносно похідної

а). Неповні р-ня. ДР, яке не містить шуканої функції. Має вигляд , (2.33) Припустимо, що f(x) являється неперервною на функцією. Тоді ф-я (2.34) являэться загальним розв`язком д-р (1) в області a < x < b, -< y < + .(2.35) Особливих розвязків ДР (2.33) немає. Разом з ДР (2.33) розглянемо початкові умови (2.36) Проінтегруємо ДР (2.34) від до x Знаходимо с з умови (2.36) (2.37) - загальний розвязок ДР (2.33) в формі Коші. Якщо f(x) - неперервна на за виключенням точки , в якій приймає нескінченне значення, то ...

Системи координат (декартова, полярна, циліндрична, сферична). Довжина і координати вектора. Векторний простір

План Базис. Лінійна залежність і незалежність векторів. Декартова система координат. Довжина і координати вектора. Поділ відрізка в заданому відношенні. Полярна система координат. Циліндрична система координат. Сферична система координат. Заміна системи координат. 1. Базис Довільна впорядкована (взята в певному порядку) трійка некомпланарних векторів називається базисом простору. Базисом на площині називаються два неколінеарних вектори, взяті в певному порядку. Базисом на прямій називається довільний ненульовий ...