Search:

Інтерполяція

У випадку, коли вузли інтерполювання утворюють арифметичну прогресію (рівновіддалені)

( - крок інтерполювання), користуються інтерполяційною формулою, яка використовує скінченні різниці функції .

Скінченою різницею першого порядку величини називається різниця між двома послідовними її табличними значеннями:

Скінченою різницею другого порядку величини називається різниця між двома послідовними різницями першого порядку:

Аналогічно визначаються і скінченні різниці вищих порядків.

Із означень одержуємо:

Можна показати методом математичної індукції, що і в загальному випадку коефіцієнти виразу є біноміальними, а весь вираз нагадує розгорнутий -ий степінь суми. Тому

У цій формулі є номер табличного значення , або інакше - число кроків , які відділяють табличне значення від , тобто

Якщо будемо обчислювати нетабличне значення , що відповідає нетабличному значенню , і збережемо вигляд правої частини рівності для , то величина буде такою самою функцією від , якою функцією від раніше було ( за всіх табличних переходить в ).

Замінивши на , одержуємо інтерполяційну формулу Ньютона:

У розгорнутому вигляді є многочлен степеня відносно . За всіх табличних значень аргументу дорівнює відповідному табличному значенню функції , тобто .

Зауваження. Якщо функція лінійна або якщо розміщення на координатній площині точок наближено нагадує пряму лінію , то для одержання проміжних (нетабличних ) значень не має необхідності в інтерполяційних формулах, побудованих на базі усієї таблиці. Достатньо використати лише два ближчих вузли інтерполювання. Нехай і потрібно знайти , знаючи відповідні табличні значення та . Із рівняння прямої

Перейти на сторінку номер:
 1  2  3 


Подібні реферати:

Неперервність функції в точці і в області.Дії над неперервними функціями

План Неперервність функції в точці та в області. Дії над неперервними функціями. Основні властивості функцій, неперервних на відрізу, в обмеженій замкнутій області. Точки розриву та їх класифікація. Павутинні моделі ринку. 1. Неперервність функцій. Розриви функції та їх класифікація Означення 1. Функція називається неперервною в точці : 1) якщо функція , визначена в точці ; 2) якщо існує границя в точці ; 3) якщо границя функції дорівнює значенню функції в цій точці, тобто . Разом всі ці умови є необхідними і ...

Числові послідовності. Границя, основні властивості границь. Нескінченно малі і нескінченно великі величини, їх властивості

План Числова послідовність. Означення границі числової послідовності. Основні теореми про границі. Обчислення деяких границь. Монотонні послідовності. Число е. Верхня та нижня границя. Функціональна послідовність критерій Коші. Уявімо собі натуральний ряд чисел. Зіставимо з довільним числом n відповідно з деяким правилом аn. Упорядкований набір чисел а1, а2, ... аn називається числовою послідовністю. Задати числову послідовність означає задати закон, за яким кожному натуральному n ставиться у відповідність єдине цілком ...

Інтеграл Ейлера

(1)   Функція досягає свого найбільшого значення 1 при t = 0. Отже, при t > 0 і t < 0. Беручи t = ±х2, дістаємо: звідки (2) (3) Підносячи вирази (63) і (64) до степеня з будь-яким натураль­ним показником n, маємо: (4) (5) Інтегруючи нерівність (65) на проміжку від 0 до 1, а нерівність (6) — від 0 до +, дістаємо: . Водночас виконуються такі співвідношення: 1) ; 2) ; 3) . Звідси Підносячи до квадрата і перетворюючи вираз (67), дістаємо: .(7) Із формули Вілліса випливає, що обидва крайні вирази у (68) при п ...