Search:

Теорія металів Друде

RH=Ey/JxH (15)

Оскільки поле Холла напрямлене проти осі (мал.3), коефіцієнт RН повинен бути негативним. З іншої сторони, якби заряд носіїв був позитивним, знак їх х-компоненти швидкості був би зворотнім і сила Лоренца залишилася б незмінною. В результаті, поле Холла мало би напрям, протилежний тому, яке воно має при від’ємно заряджених носіях. Цей висновок дуже важливий, оскільки він означає, що вимірювання поля Холла дозволяють визначити знак носіїв заряду. Експериментальні дані, вперше одержані Холлом, були у відповідності із знаком заряду електрона, визначеним пізніше Томсоном. Одна із хороших особливостей еффекту Холла полягає в тому ,що в деяких металах коефіцієнт Холла позитивний і тому носії мають мати протилежний заряд. Щоб визначити коефіцієнт Холла і магнітоопір, визначимо спочатку густину струму Jx і Jy на випадок., коли єелектричне поле з довільними компонентами Ex і Ey, а також магнітне поле Н, напрямлене вздовж осі Z. На кожен електрон діє сила ƒ=-е(Е+V0H/с), тому рівняння (12) для імпульсу у розрахунку на один електрон набуває вигляду:

dp/dt=-e(E+p/mc*H)-p/τ (16)

У стаціонарному стані струм не залежить від часу, тому рx і рy задовольняють рівняння:

0=-eEx-wc py-px/τ (17)

0=-Ee+wc px-py/τ

де

wс=eH/mc (18)

Домножимо ці рівняння на –neτ/m і вводячи компоненти густини струму (4), знайдемо

σEx=wcτ*jy+jx

σEy=wcτ*jx+jy, (19)

де σ-статична електропровідність для моделі Друде за відсутності магнітного поля(що описується (6)). Поле Холла Еy визначається за умови перетворення в 0 поперечного струму Jy. Якщо Jy=0 у 2-гій (19), одержуємо:

E y=-(wcτ σ)*Jx =-(H/nec)*Jx (20)

R H=-1/nec (21)

Це вражаючий результат: згідно нього коефіцієнт Холла не залежить ні від яких параметрів металу, окрім густини носіїв. Вище ми обчислили n, вважаючи, що валентні електрони атома в металі перетворюються в електрони провідності. Вимірювання коефіцієнтів Холла дає прямий спосіб перевірки справедливості такого припущення.

5. Високочастотна електропровідність металу.

Для того щоб обчислити струм, залежний від часу, який створений в металі електричним полем, запишемо його у вигляді :

E(t)=Re((ω)e-iωt) (23)

Тоді рівняння руху

dP(t)/dt=-P(t)/τ+f(t)

для імпульсу який припадає на один електрон , набуває вигляду :

dP(t)/dt=-P/τ-eE (24)

Знайдемо стаціонарний розв’язок у формі

P(t)=Re(p(ω) e-iωt) (25)

Підставляючи комплексні величини р і Е в рівняння (1.24), яке повинно розв’язуватись по чистинах для дійсної і уявної частин, отримаємо, що p(ω) задовольняє рівняння

-iωp(ω)=-P(ω)/τ-eE(ω) (26)

Так як

J=-nep/m,

густина струму дорівнює :

j(t)=Re(j(ω) ) e-iωt

j(ω)=-nep(ω)/m=(ne2/m)E(ω)/((1/ τ)-i ω) (27)

Цей результат також записують і вигляді :

j(ω)=σ(ω)E(ω) (28)

де величина σ(ω) називається високочастотною провідністю , і обчислюється :

σ(ω)= σ0/(1-i ωτ); σ0= ne2τ/m (29)

Звернемо увагу на те, що при частоті , яка дорівнює нулю, цей вираз перетворюється в результат Друде σ=ne2τ/m для статичної провідності.

Найбільш важлива область застосування знайденого результату - дослідження розповсюдження електро – магнітного випромінювання в металі.

Якщо електричне поле не змінюється істотним чином на відстанях, які порівняно з довжиною вільного пробігу електрона великі, ми маємо право при обчисленні густини струму j(r,t) в точці r вважати, що поле у всьому просторі має таку ж величину E(r,t), як і в точці r . звідси і отримаємо результат

j(r,ω) =σ(ω) E(r,ω) (30)

він правильний, якщо довжина хвилі λ поля велика порівняно з довжиною вільного пробігу електрона l . В металах ця умова зазвичай виконується для видимого світла (довжина хвилі 103-104 А ). Коли вона порушується , то застосовуються інші складніші теорії.

Вважаючи, що довжина хвилі велика порівняно з довжиною вільного пробігу, можна поступити наступним чином. Якщо ми маємо густину струму j , то рівняння Максвела можна записати у вигляді :

▼·E=0; ▼·H=0; ▼x E=(-1/c)(∂H/∂t); ▼x H=4πj/c+(1/c)(∂E/∂t) (31)

Будемо шукати розв’язок , який залежить від часу як e-iωt . зауважимо, що в металі можна виразити j через Е з допомогою формули (1.28), знаходимо:

▼x(▼x E)=- ▼ 2E=(iω/c) ▼ x H==(iω/c)(4πσE/c- iωE/c) (32)

або інакше :

- ▼2E=(ω2/c2)(1+4πiσ/ ω) E (33)

Перейти на сторінку номер:
 1  2  3  4  5  6  7 


Подібні реферати:

Відомості про будову та принцип функціонування енергосистем

1. Загальні поняття Енергосистеми працюють на принципі перетворення природної енергії у електричну, транспортування останньої до споживачів і перетворення її у інші види енергії у процесах перетворення, та видозмінення об’єктів природи у відповідності до потреб та бажань людини і суспільства. Основними компонентами енергосистем є: електростанція, трансформаторні підстанції для підвищення напруги, що підводиться до лінії електропередач. Лінії електропередач високої напруги, трансформаторні підстанції для пониження високої ...

Теорія металів Друде

1.Вступ 2. Основні припущення моделі Друде. 3. Статична електропровідність металу. 4. Ефект Холла і магнетоопір 5. Високочастотна електропровідність металу. 6. Теплопровідність металу. 1. Вступ. Метали займають особливе положення у фізиці твердого тіла, виявляючи ряд вражаючих властивостей, відсутніх у інших твердих тіл (таких, як кварц, сіль). Всі вони – чудові провідники тепла і струму, володіють пластичністю, блистять на свіжому зрізі. Необхідність пояснення таких властивостей стимулювала створення сучасноі теорії ...

Інтерференція світла

Досі ми розглядали поширення в тій чи іншій части­ні простору однієї світлової хвилі. Та часто в одній і тій самій частині простору поширюються одночасно світло­ві хвилі від двох або кількох джерел світла. Наприклад, коли в кімнаті горить одночасно кілька ламп, то окремі світлові хвилі накладаються одна на одну. Що при цьому відбувається? Очевидно в кожній точці простору виникає складне електромагнітне коливання, яке е ре­зультатом додавання коливань кожної хвилі окремо. Найпростіше з'ясувати, що відбувається при ...