Search:

Порівняння функцій та їх застосування

(1.33)

то існує і , причому

(1.34)

Доведення. Умова при означає, що

де , а умова при -що , де . Крім того, оскільки існує границя (1.33), функція визначена в деякому проколеному околі точки і, отже, всюди в цьому околі виконується нерівність . Оскільки і, очевидно, в деякому проколеному околі точки , то і функція володіє тією ж властивістю. Тому функція визначена в деякому проколеному околі точки .

Тепер маємо:

Оскільки обидві частини рівності (1.34) рівноправні, то з доведеної теореми виходить, що границя, що стоїть в лівій частині, існує тоді і тільки тоді, коли існує границя в правій частині, причому у разі їх існування вони співпадають. Це робить дуже зручним застосування теореми 2 на практиці: її можна використовувати для обчислення меж, не знаючи наперед, існує чи ні дана межа.

МЕТОД ВИДІЛЕННЯ ГОЛОВНОЇ ЧАСТИНИ ФУНКЦІЇ І ЙОГО ЗАСТОСУВАННЯ ДО ОБЧИСЛЕННЯ ГРАНИЦЬ.

Нехай -функції, визначені в деякій проколеному околі точки . Якщо функція представлена у вигляді

то функція називається головною частиною функції при прамуючому до

Приклади. 1. Головна частина функції , при рівна , бо

2. Якщо то функція є головною частиною многочлена при , бо

Якщо задана функція , то її головна частина не визначається однозначно: будь-яка функція , еквівалентна , є її головною частиною. Наприклад, нехай . Оскільки, з одного боку при , а з другого боку то . В першому випадку головною частиною можна вважати , в другому . Проте, якщо задається певним чином головної частини, то при його вигідному виборі можна добитися того, що головна частина вказаного вигляду буде визначена однозначно.

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Диференціальні рівняння І порядку

ПЛАН Основи означення. Диференціальні рівняння І порядку. Задача Коші. Теорема існування та єдності розв'язку. Економічні задачі, що потребують використання диференціального рівняння. І. Означення. Диференціальним рівнянням називають рівняння, яке містить незалежну змінну х, шукану функцію у і її похідні у, у,..., у(N). Символічно диференціальне рівняння записується так: (1) Приклад: 2х+у-3у'-0; у'-4-0; Sin у'-cosх у; у'-2х – диференціальне рівняння. Означення. Порядком диференціального рівняння ...

Інтегруючий множник

1.Рівняння в повних диференціалах Якщо ліва частина диференціального рівняння є повним диференціалом деякої функції , тобто , і, таким чином, рівняння приймає вигляд то рівняння називається рівнянням в повних диференціалах. Звідси вираз є загальним інтегралом диференціального рівняння. Критерієм того, що рівняння є рівнянням в повних ди­ференціалах, тобто необхідною та достатньою умовою, є виконання рівності Нехай маємо рівняння в повних диференціалах. Тоді Звідси де - невідома функція. Для її визначення ...

Дії з векторами

Означення 5. Сумою двох векторів та називають вектор , який сполучає початок вектора з кінцем вектора при умові, що початок вектора вміщено в кінець вектора . Наприклад, задані вектори та (мал. 6а). Для побудування суми цих векторів перенесли паралельно самому собі, в його кінець вмістили початок вектора та сполучили початок вектора з кінцем вектора (Мал. 6b). а) b) Мал.6 Суму кількох векторів , , … , визначають аналогічно: початок кожного слідуючого вектора вміщують в кінець попереднього. Одержують ламану лінію і тоді ...