Search:

Порівняння функцій та їх застосування

Зокрема, справедлива наступна лема.

Лема 5. Якщо функція володіє при , головною частиною вигляду , де А і k - сталі, то серед всіх головних частин такого вигляду вона визначається єдиним чином.

Дійсно, нехай, при ,

і

Тоді ; тому , тобто

що справедливе лише у випадку і .

Поняття головної частини функції корисно при вивченні нескінченно малих і нескінченно великих і з успіхом використовується при розв’язанні різноманітних задач математичного аналізу. Досить часто вдається нескінченно малу складного аналітичного вигляду замінити, в околі даної точки, з точністю до нескінченно малих більш високого порядку, більш простою функцією. Наприклад, якщо вдається представити у вигляді , то це означає, що з точністю до нескінченно малих більш високого порядку, ніж , нескінченно мала поводиться в околі точки , як степенева функція .

Покажемо на прикладах, як метод виділення головної частини нескінченно малих застосовується до обчислення границь функцій. При цьому широко використовуватимемо отримані нами співвідношення еквівалентності (1.26).

Нехай вимагається знайти межу (а значить, і довести, що він існує))

Використовуючи доведену вище (див. (1.26)) еквівалентність ~ при , маємо при , тому (див. теорему 1)) . Проте і , а отже

Далі , унаслідок чого

Очевидно також, що

З асимптотичої рівності , отримаємо

з

а з

Всі ці співвідношення виконуються при . Тепер маємо

тому

Але при , і, значить, по теоремі 2,

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Початки комбінаторики

1. Принцип добутку і принцип суми. Розміщення з повтореннями Двома основними правилами комбінаторики є: Принцип суми. Якщо множина A містить m елементів, а множина B – n елементів, і ці множини не перетинаються, то AÈB містить m+n елементів. Принцип добутку. Якщо множина A містить m елементів, а множина B – n елементів, то A´B містить m×n елементів, тобто пар. Кількість елементів множини A будемо далі позначати |A|. Ці правила мають також вигляд: Принцип суми. Якщо об'єкт A можна вибрати m способами, ...

Гіпербола

Визначення 1. Геометричне місце точок, різниця відстаней від кожної з який до двох даних точок, які називаються фокусами, є постійною величиною, називається гіперболою. - канонічне рівняння гіперболи. Досліджуємо форму гіперболи. 1. Знайдемо точки перетинання з осями. OX: y = 0, , , A(a;0) , B(-a;0). OY: x = 0, , . Визначення 2. Точки A і B називаються вершинами гіперболи. 2. З виду рівняння випливає, що лінія симетрична щодо осей OX, OY і початку координат. 3. Þ Þ . Отже, крива розташована поза прямокутником зі ...

Біографія Піфагора – видатного математика та вченого

В VI столітті до нашої ери осередком грецької науки та мистецтва стала Іонія- група островів Егейського моря, які знаходяться біля берегів Малої Азії. Там у сім’ї золотих справ майстра Мнесарха народився син. За легендою, в Дельтах, куди приїхали Мнесарх з дружиною Парфенісою,- чи по справам, чи у весільну подорож оракул пророчив їм народження сина, який буде славитися віками своєю мудрістю, справами та красою. Бог Аполлон, вустами оракла, радить їм плити в Сірію. Пророцво збувається- в Сидоні Парфеніса народила хлопчика. І ...