Search:

Порівняння функцій та їх застосування

Таким чином, шукана границя існує і рівний 2.

При обчисленні границя функцій за допомогою методу виділення головної частини слід мати на увазі, що у випадках, не розглянутих в п. 1.3, взагалі кажучи, не можна нескінченно малі замінювати еквівалентними їм. Так, наприклад, при відшуканні границь вираження

було б помилкою замінити функцію эквивалентній їй при функцією .

Для відшукання границь виразів вигляду цілообразно границю їх логарифмів. Розглянемо подібний приклад. Знайдемо границю . Зауважуючи, що

(1.35)

бачимо, що слід обчислити границю

Оскільки , то звідси, згідно теоремі 2 цього параграфа, маємо

але , а тому

таким чином,

Через неперервність показникової функції з (1.35) маємо

Спосіб обчислення границь за допомогою виділення головної частини функції є дуже зручним, простим і разом з тим вельми загальним методом. Деяке утруднення в його застосуванні зв'язано поки з тим, що ще немає достатньо загального способу виділення головної частини функції.

Приклади:

1.

2.

3.

4.

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Методи інтегрування

Перш за все відмітимо, що в усіх табличних інтегралах підінтегральна функція є певною функцією, аргумент якої співпа­дає із змінною інтегрування. Розглянемо, наприклад, інтеграл ∫sin(x2+l)dx. В цьому ви­падку аргументом основної елементарної функції сінус буде u=х2+1, а змінна інтегрування — х, тому при знаходженні цього інтеграла не можна використати табличну формулу ∫sin udu=- cos +С Заданий невизначений інтеграл ∫f(x)dx можна знайти, якщо якимось чином вдається звести його до одного із табличних ...

Диференціальні рівняння першого порядку. Задача Коші

План Вступні відомості про диференціальні рівняння Задачі геометричного і фізичного характеру, що приводять до диференціальних рівнянь Диференціальні рівняння першого порядку Задача Коші Геометрична інтерпретація диференціального рівняння першого порядку 12. ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ 12.1. Вступні відомості про диференціальні рівняння Звичайним диференціальним рівнянням називається рівняння, яке зв’язує незалежну змінну , невідому функцію та її похідні. Найвищий порядок похідної від шуканої функції, що входить в ...

Еліпсоїд

1) Еліпсоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням. Рівняння (1) називається канонічним рівнянням еліпсоїда. Дослідження форми еліпсоїда проведемо методом паралельних перерізів. Для цього розглянемо перерізи даного еліпсоїда площинами, паралельними площині Оху. Кожна з таких площин визначається рівнянням z=g, де h – довільне дійсне число, а лінія, яка утвориться і перерізі, визначається рівняннями += 1 - ; z=h. Дослідимо рівняння (2) при різних значення h. Якщо >c, ...