Search:

Порівняння функцій та їх застосування

Таким чином, шукана границя існує і рівний 2.

При обчисленні границя функцій за допомогою методу виділення головної частини слід мати на увазі, що у випадках, не розглянутих в п. 1.3, взагалі кажучи, не можна нескінченно малі замінювати еквівалентними їм. Так, наприклад, при відшуканні границь вираження

було б помилкою замінити функцію эквивалентній їй при функцією .

Для відшукання границь виразів вигляду цілообразно границю їх логарифмів. Розглянемо подібний приклад. Знайдемо границю . Зауважуючи, що

(1.35)

бачимо, що слід обчислити границю

Оскільки , то звідси, згідно теоремі 2 цього параграфа, маємо

але , а тому

таким чином,

Через неперервність показникової функції з (1.35) маємо

Спосіб обчислення границь за допомогою виділення головної частини функції є дуже зручним, простим і разом з тим вельми загальним методом. Деяке утруднення в його застосуванні зв'язано поки з тим, що ще немає достатньо загального способу виділення головної частини функції.

Приклади:

1.

2.

3.

4.

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Економічний зміст похідної. Використання поняття похідної в економіці

Розглянемо задачу про продуктивність праці. Нехай функція и = и(t) відображає кількість виробленої продукції u за час t i необхідно знайти продуктивність праці в момент t0. За період часу від t0 до t0 + t кількість виробленої продукції зміниться від значення u0 = u(t0) до значення u0 + u = u(t0 +t); тоді середня продуктивність праці за цей період часу zсер=. Очевидно, що продуктивність праці в момент t0 можна визначити як граничне значення середньої проду­ктивності за період часу від t0 до t0 + t при t à 0 , тобто ...

Інтерполяція

План Інтерполяція Інтерполяційна формула Лагранжа Інтерполяційна формула Ньютона 13.16. Інтерполювання функцій Нехай відомі числові значення деякої величини , які відповідають числовим значенням величини /вузли інтерполювання /. Вважаючи функцією від , складемо таблицю із цих чисел: Такі таблиці виникають на практиці в результаті дослідів, які проводяться над величиною ; але їх складають і для аналітично заданих функцій : таблиці квадратів та кубів чисел, таблиці логарифмів, таблиці тригонометричних ...

Зв’язок між розв’язками прямої і двоїстої задач. Геометрична інтерпретація двоїстих задач

Розглянемо кілька двоїстих задач, утворену основною задачею лінійного програмування і двоїстої до неї. Вихідною задачею є: найти максимум функції (1) при умовах (2) (3) Двоїста задача: знайти мінімум функції (4) при умовах (5) Кожна з задач двоїстої пари (1) — (3) і (4), (5) фактично є самостійною задачею лінійного програмування і може бути вирішена незалежно одна від іншої. Однак при визначенні симплексним методом оптимального плану однієї з задач тим самим знаходиться рішення й інша задача. Існуючі залежності між ...