Search:

Порівняння функцій та їх застосування

(1.8)

маємо

(1.9)

Дійсно, нехай задано ; з (1.7) випливає, що знайдеться таке що при

(1.10)

а з умови (1.8) випливає, що існує таке що при тому в силу (1.10)

при що і означає виконання рівності (1.9).

Нехай тепер послідовність така, що

тобто

(1.11)

Покажемо, що При цьому без обмеження спільності можна вважати, що Для довільного знайдеться таке натуральне що і, отже, причому в силу Тому маємо:

(1.12)

Наголошуючи, що в силу (1,9)

і

і переходячи до границю в нерівності (1.12) при , отримаємо

Оскільки —первісна послідовність, яка задовільняє умовам (1.11), то тим самим доведено, що

(1.13)

Нехай тепер послідовність така, що.

тобто,

(1.14)

Покладемо , тоді і при чому без обмеження спільності можна вважати, що Тоді

,

де

і

і через вже доведену рівність (1.13)

Але була довільною послідовністю, що задовольняє умовам (1.14), тому

(1.15)

Таким чином, функція має в точці О границі з ліва і права, рівні одному і тому ж числу е. Тому існує і її двостороння границя при , яка також рівна е.

Наслідок 1.

(1.16)

і, зокрема, при

Дійсно, використовуючи неперервність логарифмічної функції, неперервність суперпозиції функцій і рівність (1.6), отримаємо:

Наслідок 2.

(1.17)

Зокрема, якщо то

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Розклад вектора на складові на площині і в просторі. Декартові система координат

Мета. Ознайомитись з поняттям про базис на площині і в просторі; та координати вектора. Розклад вектора з двома не колінеарними векторами на площині. Система координат на площині. Розклад вектора за трьома не колінеарними векторами в просторі. Система координат в просторі. Теорема. Будь – який на площині можна подати, про чому єдиним чином, у вигляді лінійної комбінації двох не колінеарних векторів. , де - не колінеарні вектори - числа. Доведемо це. Нехай маємо на площині три вектори , причому не колінеарні. Покажемо, що ...

Схеми застосування інтеграла до знаходження геометричних і фізичних величин. Обчислення площ плоских фігур в декартових і полярних координатах

План Схеми застосування інтеграла до знаходження геометричних і фізичних величин Обчислення площі плоскої фігури Обчислення площі в декартових координатах Площа криволінійного сектора в полярних координатах ЗАСТОСУВАННЯ ВИЗНАЧЕНОГО ІНТЕГРАЛА 1. Площа плоскої фігури 1.1. Обчислення площі в декартових координатах В п.9.2. мова йшла про те, коли розглядається площа криволінійної трапеції, обмеженої віссю кривою причому на відрізку може бути як додатною, так і від’ємною, то площа такої криволінійної трапеції обчислюється ...

Системи лінійних диференціальних рівнянь із сталими коефіцієнтами. Поняття про стійкість розв’язків

План Поняття про стійкість розв’язків. Контрольні запитання: Які функції описують незбурений розв’язок? Який розв’язок системи називається стійким за Ляпуновим ? При яких умовах розв’зок називають нестійким ? Який розв’язок називають асимптотично стійким ? Дано рівняння y + y = t з початковою умовою y(0) = 1. Дослідити розв’язок, що задовольняє цю умову, на стійкість. При створенні приладів, конструкцій, машин, що відповідають певним умовам, треба знати, як поводитиметься об’єкт при невеликих перерозподілах сил зміні ...