Search:

Порівняння функцій та їх застосування

(1.І8)

Функція строго монотонна і неперервна на всій числовій осі, тому зворотна функція також строго монотонна і неперервна при . Оскільки при маємо також і , то позначення і еквівалентні. Застосуємо для обчислення границі (1.17) правило заміни змінної.

Поклавши , отримаємо

ПОРІВНЯННЯ ФУНКЦІЙ

Всі, що розглядаються в цьому пункті, функції визначені в деякому фіксованому проколотому околі точки розширеної числової прямої: при чому цей окіл може бути і одностороній. Тому кожного разу не буде сказано, що .

Як ми вже знаємо, сума, різниця і добуток нескінченно малих функцій є також нескінченно малими функціями; цього не можна, взагалі кажучи, сказати про їх подільність: ділення однієї нескінченно малої на іншу може призвести до різноманітних випадків, як це показують нижче проведені приклади нескінченно малих при функцій і .

Нехай, наприклад і тоді

Якщо ж то а якщо , то границя не існує.

Означення 1. Якщо для двох функцій f і g існують такі проколені околи і сталі , що для всіх виконується нерівність то функція f називається обмеженою порівнянно з функцією g на і позначається:

(читається: є велике від при , прямучому до ).

Наголосимо, що запис має тут інше, ніж звичайно, значення: він тільки вказує на те, що дана властивість має місце лише в деякому околі точки ні про яку межу тут мови немає.

Лема 3. Якщо і існує скінчена границя то

Доведення. З існування скінченої границі

,

слідує існування такого проколотого околу точки що функція на ній обмежена, тобто є така стала , що для всіх виконується нерівність а отже, і нерівність Це і означає, що , .

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Первісна функція і неозначений інтеграл. Основні властивості неозначеного інтеграла.Таблиця основних інтегралів

План Первісна функція Неозначений інтеграл Основні властивості неозначеного інтеграла Таблиця основних інтегралів Тільки допустивши нескінченно малу (величину) для спостереження – диференціал історії, тобто однорідні захоплення людей, і досягнувши мистецтва інтегрування (брати суми цих нескінченно малих ), ми зможемо надіятись на пізнання законів історії . О. М. Толстой 1. Неозначений інтеграл За допомогою диференціального числення вивчають локальні властивості функції однієї або кількох змінних тобто властивості ...

Лінійні, однорідні та неоднорідні різницеві рівняння

Лінійні різницеві рівняння зі сталими коефіцієнтами Означення. Лінійним різницевим рівнянням n-го порядку називається рівняння (1) де - сталі коефіцієнти. Якщо виразимо оператори різниць через оператор зсуву S, то можемо записати різницеве рівняння в рівнозначній формі (2) Число n називається порядком різницевого рівняння. Це рівняння можна також записати в операторній формі (3) Якщо , то різницеве рівняння називається однорідним, якщо , то рівняння називається неоднорідним. Нагадаємо, що оператор зсуву S (4) Далі, ...

Інтегруючий множник

1.Рівняння в повних диференціалах Якщо ліва частина диференціального рівняння є повним диференціалом деякої функції , тобто , і, таким чином, рівняння приймає вигляд то рівняння називається рівнянням в повних диференціалах. Звідси вираз є загальним інтегралом диференціального рівняння. Критерієм того, що рівняння є рівнянням в повних ди­ференціалах, тобто необхідною та достатньою умовою, є виконання рівності Нехай маємо рівняння в повних диференціалах. Тоді Звідси де - невідома функція. Для її визначення ...