Search:

Порівняння функцій та їх застосування

Приклади. при , або при ; при , або при . Запис при , означає, що функція обмежена в деякому околі точки наприклад при , або , і, значить, функція обмежена в околі точки

Означення 2. Якщо функції і такі, що і при , то вони називаються функціями одного порядку при , це записується у вигляді :

Це поняття найбільш змістовне у тому випадку, коли функції f і g є або нескінченно малими, або нескінченно великими при . Наприклад, функції і є при нескінченно малими одного порядку, бо

Лема 4. Якщо існує скінчена межа , то

Доведення. Покладемо тоді і Отже з леми 3, при .

Оскільки існує такий проколений окіл точки ,що для всіх маємо , а отже, і Для покладемо тоді і . Тому, згідно леми 3

Наприклад візьмемо функцію і . Маємо (див. (1.1)), тому згідно доведеному, функції і одного порядку при .

Означення 3. Функціїи і називаються эквівалентними при , якщо в деякому проколеному околі точки визначена така функція , що

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Остроградський М.В. (1801-1862) - математик України

Народився в селi Пашенна на Полтавщині. У 1816—1821 рр. навчався в Харківському університеті. В 1822—1827 рр. вдосконалював математичну освіту у Франції: слухав математичні курси на Паризькому факультеті наук і в Коллеж де Франс, що дозволило йому називати своїми вчителями таких великих французьких учених, як О.Л.Коші, Л.Пуансо, Ж.Ф.М.Біне, Ж.Ш.Ф.Штурма, Г.Ламе. З 1828 р. М.В.Остроградський працював у Петербурзі: у Морському кадетському корпусі, з 1830 р. — в Інституті корпусу інженерів шляхів, з 1832 р. — професор ...

Методи інтегрування

Перш за все відмітимо, що в усіх табличних інтегралах підінтегральна функція є певною функцією, аргумент якої співпа­дає із змінною інтегрування. Розглянемо, наприклад, інтеграл ∫sin(x2+l)dx. В цьому ви­падку аргументом основної елементарної функції сінус буде u=х2+1, а змінна інтегрування — х, тому при знаходженні цього інтеграла не можна використати табличну формулу ∫sin udu=- cos +С Заданий невизначений інтеграл ∫f(x)dx можна знайти, якщо якимось чином вдається звести його до одного із табличних ...

Інтегрування з допомогою заміни змінної. Інтегрування частинами

План Інтегрування частинами Інтегрування часток Заміна змінної 1. Інтегрування частинами Нехай і – диференційовані функції на Тоді або Звідси (8.16) Формула (8.16) називається формулою інтегрування частинами в невизначеному інтегралі. Користуючись формулою (8.16), рекомендується обчислення інтегралів від таких функцій : де –поліном , – раціональна функція . Описати всі можливі випадки застосування формули інтегрування частинами неможливо. Інтегруючи такі вирази, завжди виникає дилема : що взяти за, а що – ...