Search:

Порівняння функцій та їх застосування

Приклади. при , або при ; при , або при . Запис при , означає, що функція обмежена в деякому околі точки наприклад при , або , і, значить, функція обмежена в околі точки

Означення 2. Якщо функції і такі, що і при , то вони називаються функціями одного порядку при , це записується у вигляді :

Це поняття найбільш змістовне у тому випадку, коли функції f і g є або нескінченно малими, або нескінченно великими при . Наприклад, функції і є при нескінченно малими одного порядку, бо

Лема 4. Якщо існує скінчена межа , то

Доведення. Покладемо тоді і Отже з леми 3, при .

Оскільки існує такий проколений окіл точки ,що для всіх маємо , а отже, і Для покладемо тоді і . Тому, згідно леми 3

Наприклад візьмемо функцію і . Маємо (див. (1.1)), тому згідно доведеному, функції і одного порядку при .

Означення 3. Функціїи і називаються эквівалентними при , якщо в деякому проколеному околі точки визначена така функція , що

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Геометрія, з давніх часів до сьогодення

Геометрія завжди мала численні практичні застосу­вання. Основними її споживачами були землеміри, реміс­ники, будівельники, художники. Землемірам потрібні були правила вимірювання ділянок землі, будівельники, кори­стуючись геометрією, креслили план споруди, а потім зводили її, користуючись певними, виробленими протя­гом століть правилами, згідно з якими певні геомет­ричні форми частин споруд були пов'язані з умовами їх міцності. Будівельники використовували також правило про­порційного поділу. Ремісникам потрібні були ...

Схеми застосування інтеграла до знаходження геометричних і фізичних величин. Обчислення площ плоских фігур в декартових і полярних координатах

План Схеми застосування інтеграла до знаходження геометричних і фізичних величин Обчислення площі плоскої фігури Обчислення площі в декартових координатах Площа криволінійного сектора в полярних координатах ЗАСТОСУВАННЯ ВИЗНАЧЕНОГО ІНТЕГРАЛА 1. Площа плоскої фігури 1.1. Обчислення площі в декартових координатах В п.9.2. мова йшла про те, коли розглядається площа криволінійної трапеції, обмеженої віссю кривою причому на відрізку може бути як додатною, так і від’ємною, то площа такої криволінійної трапеції обчислюється ...

Поняття про ряд Тейлора

Степеневий ряд називається рядом Тейлора. Для розкладу в ряд Тейлора діалоговому режимі діємо за схемою: Series → x=1 → Power Series Power Series Порівняння графіків функції y=lnx і многочлена plot 2D + Rectangular 1 0 1 1,5 2 -2 -4 -5 Ряд Тейлора Досі ми вивчали властивості суми заданого степеневого ряду. Вважатимемо тепер, що функція задана, і з’ясуємо, за яких умов цю функцію можна подати у вигляді степеневого ряду і як знайти цей ряд. Нехай функція f(x) є сумою степеневого ряду (1) в інтервалі ...