Search:

Порівняння функцій та їх застосування

Приклади. при , або при ; при , або при . Запис при , означає, що функція обмежена в деякому околі точки наприклад при , або , і, значить, функція обмежена в околі точки

Означення 2. Якщо функції і такі, що і при , то вони називаються функціями одного порядку при , це записується у вигляді :

Це поняття найбільш змістовне у тому випадку, коли функції f і g є або нескінченно малими, або нескінченно великими при . Наприклад, функції і є при нескінченно малими одного порядку, бо

Лема 4. Якщо існує скінчена межа , то

Доведення. Покладемо тоді і Отже з леми 3, при .

Оскільки існує такий проколений окіл точки ,що для всіх маємо , а отже, і Для покладемо тоді і . Тому, згідно леми 3

Наприклад візьмемо функцію і . Маємо (див. (1.1)), тому згідно доведеному, функції і одного порядку при .

Означення 3. Функціїи і називаються эквівалентними при , якщо в деякому проколеному околі точки визначена така функція , що

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Метод виокреслення лінійно незалежних векторів

1.Нехай V – не порожня підмножина векторів із Rm, коли з умов А є V, В є V випливає, що при L є R, B є R вектор La+ Bb є V. Візьмемо систему векторів а1, а2..., аn, що належать Rm. Множина всіх лінійних комбінацій цих векторів. а=Х1а1+Х2а2+...Хnan,Xs є R(1) утворює лінійний підпростір V у Rm. Справді, якщо а= в=, Хs, Ys є R а, в є V, то виконується рівність La+Bb =, тобто La+Bb є V. Підпростір V, утворений лінійними комбінаціями виду (1), називається лінійною оболонкою системи векторів а1, а2,...,аn, або підпростором, ...

Частинні коефіцієнти кореляції і коефіцієнти регресії

Частинні коефіцієнти кореляції так само, як і парні, характеризують тісну зв’язку між двома змінними. Але на відміну від парних частинні коефіцієнти характеризують тісноту зв’язку за умови, що інші незалежні змінні сталі. Можна дістати спрощений вираз для розрахунку коефіцієнта частинної кореляції, обравши інший спосіб інтерпретації цього коефіцієнта. Для випадку простої регресії двох змінних маємо де характеризує коефіцієнт при х у рівнянні у = f(x), а - коефіцієнт при у в рівняння х = f (у). Отже, квадрат коефіцієнта ...

Метод безпосереднього інтегрування

Цей метод базується на рівності , де а та b – де сталі і застосовується у тих випадках, коли підінтегральна функція f має вигляд однієї із підінтегральних функцій таб­личних інтегралів, але її аргумент відрізняється від змінної інтегрування постійним доданком або постійним множником або постійним множником та постійним доданком. Приклад 3. Знайти інтеграли Розв’язування. У цьому випадку змінна інтегрування х відрізняється від аргументу степеневої функції u8 = (х + 3)8 на постійний доданок 3; У цьому випадку аргумент ...