Search:

Порівняння функцій та їх застосування

Нехай функція визначена в деякому проколеному околі точки Покладемо (вважаючи що належить цоьму околі)

(1.28)

Покажемо, що

(1.29)

Нехай задано Оскільки

(тут u — незалежна змінна), існує таке число що при виконується нерівність

Для вказаного в силу (1.25) знайдеться таке число , що для всіх , задовольняючих умову , виконується нерівністьо Отже, якщо і , то

Інакше кажучи, якщо і , то

(1.30)

Якщо ж і , то згідно (1.28) маємо і, отже, нерівність (1.30) очевидно також виконується.

Рівність (1.29) доведена, а оскільки з (1.28) випливає, що для всіх , то доведена справедливість асимптотичної рівності (1.27). Аналогічно доводиться і решта асимптотичні формули (1.26).

Означення 4. Якщо в деякому проколеному околі точки де , то функція називається нескінченно малою в порівнянні з функцією при , пишеться , (читається: є о мале від при , прямучому до ).

Через це означення запис означає просто, що функція є нескінченно малою при ,

Якщо при , та умову

можна переписати у вигляді

Таким чином, під при розуміється будь-яка функція така, що

У випадку, коли нескінченно мала при то говорять, що при є нескінченно мала більш високого порядку, ніж

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Метод безпосереднього інтегрування

Цей метод базується на рівності , де а та b – де сталі і застосовується у тих випадках, коли підінтегральна функція f має вигляд однієї із підінтегральних функцій таб­личних інтегралів, але її аргумент відрізняється від змінної інтегрування постійним доданком або постійним множником або постійним множником та постійним доданком. Приклад 3. Знайти інтеграли Розв’язування. У цьому випадку змінна інтегрування х відрізняється від аргументу степеневої функції u8 = (х + 3)8 на постійний доданок 3; У цьому випадку аргумент ...

Функції та способи їх задання

План 1. Деякі властивості функції. 2. Області визначення та значення функції заданої аналітично. 3. Основні елементарні функції. 4. Складні та елементарні функції. ВСТУП ДО МАТЕМАТИЧНОГО АНАЛІЗУ ФУНКЦІЯ Поняття функціональної залежності Величина називається змінною (сталою), якщо в умовах даної задачі набуває різних (тільки одне) значень. Розглянемо дві змінні величини . Означення: Функцією у = f(x) називається така відповідність між множинами D і Е, при якій кожному значенню змінної х відповідає одне й тільки одне значення ...

Інтегрування з допомогою заміни змінної. Інтегрування частинами

План Інтегрування частинами Інтегрування часток Заміна змінної 1. Інтегрування частинами Нехай і – диференційовані функції на Тоді або Звідси (8.16) Формула (8.16) називається формулою інтегрування частинами в невизначеному інтегралі. Користуючись формулою (8.16), рекомендується обчислення інтегралів від таких функцій : де –поліном , – раціональна функція . Описати всі можливі випадки застосування формули інтегрування частинами неможливо. Інтегруючи такі вирази, завжди виникає дилема : що взяти за, а що – ...