Search:

Порівняння функцій та їх застосування

Наприклад, при , або

Так само і при

Відзначимо, що якщо то і при Дійсно, нехай , де . Тоді функція обмежена в деякому проколеному околі точки точки і, значить, в вказаному проколеному околі, а це означає, що , .

Збираючи разом введені в цьому пункті основні поняття, отримаємо: нехай в деякому проколеному околі Ů=Ů(x) точки

тоді

якщо функція обмежена на , то

якщо '

якщо

При використовуванні рівності з символами О і о слідує мати на увазі, що вони не є рівністю в звичайному значенні цього слова. Так, якщо

то було б помилкою зробити звідси висновок, що як це було б у разі звичайної рівності. Наприклад, і при , але . Аналогічно, якщо

при

то було б помилкою зробити висновок, що

Річ у тому, що один і той же символ або може позначати різні конкретні функції. Ця обставина зв'язана з тим, що при визначенні символів і ми по суті ввели цілі класи функцій, що володіють певними властивостями (клас функцій, обмежених в деякому околі точки в порівнянні з функцією і клас функцій, нескінченно малих в порівнянні з f(x) при ) і було б правильнішим писати не і , а відповідно і о . Проте це призвело б до істотного ускладнення обчислень з формулами, в яких зустрічаються символи О і о. Тому ми збережемо колишній запис і , але завжди читатимемо цю рівність, відповідно до приведених вище визначень, тільки в одну сторону: зліва направо (якщо, звичайно, не обумовлено що-небудь інше). Наприклад, запис означає, що функція є нескінченно малою в порівнянні з функцією f при але зовсім не те, що всяка нескінченно мала по порівнянню з f функція рівна .

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Інтегрування раціональних функцій

План Інтегрування раціональних функцій Прості раціональні дроби Неправильні раціональні дроби Інтегрування правильного раціонального дробу. Формула Остроградського 1. Інтегрування раціональних дробів Прості раціональні дроби Простими раціональними дробами називаються такі чотири види дробів : , де –дійсні числа ; – ціле число , тобто не розкладається на лінійні множники в множині дійсних чисел . Розглянемо тепер інтеграли від цих дробів : в) ; г) Цей дріб може бути зведений до іншого вигляду виділенням у ...

Метод виокреслення лінійно незалежних векторів

1.Нехай V – не порожня підмножина векторів із Rm, коли з умов А є V, В є V випливає, що при L є R, B є R вектор La+ Bb є V. Візьмемо систему векторів а1, а2..., аn, що належать Rm. Множина всіх лінійних комбінацій цих векторів. а=Х1а1+Х2а2+...Хnan,Xs є R(1) утворює лінійний підпростір V у Rm. Справді, якщо а= в=, Хs, Ys є R а, в є V, то виконується рівність La+Bb =, тобто La+Bb є V. Підпростір V, утворений лінійними комбінаціями виду (1), називається лінійною оболонкою системи векторів а1, а2,...,аn, або підпростором, ...

Диференціал функції, його геометричний зміст. Лінеаризація функції. Диференціал складної функції

Поняття диференціала тісно пов'язане з поняттям похідної, і е одним з найважливіших в математиці. Диференціал наближено до­рівнює приросту функції і пропорційний приросту аргументу. Вна­слідок цього диференціал широко застосовується при дослідженні різ­номанітних процесів і явищ. Будь-який процес протягом достатньо малого проміжку часу змінюється майже рівномірно, тому дійсний приріст величини, що характеризує процес, можна замінити дифе­ренціалом цієї величини на даному проміжку часу. Таку заміну на­зивають ...