Search:

Порівняння функцій та їх застосування

Як приклад на поводження з цими символами доведемо рівність

(1.31)

де с - стала.

Згідно сказаному, треба показати, що якщо , то . Дійсно, якщо , то , де0. Покладемо тоді де, очевидно і, значить, .

На закінчення відзначимо, що сказане про використовування символів О і о не виключає, звичайно, того, що окремі формули з цими символами можуть виявитися справедливими не тільки при читанні зліва направо, але і справа наліво; так, формула (1.31) при вірна і при читанні справа наліво.

Приклади.

1.;

тому

2.

3., бо

4.Так як |1/x2| £ |1/x| при |x| ³ 1, то 1/x2 = O(1/x) при x ® ¥;

5.1/x = O(1/x2) при x® 0 так как |1/x|£ 1/x2 при |x|£ 1.

6.Функції f(x) = x(2+sin 1/x) g(x) = x x ® 0 являються нескінчено малими одного порядку при x® a , так як

f/g = (x(2+sin 1/x))/x = 2+sin 1/x = |2+sin 1/x| £ 3 Þ f=O(g), g/f = 1/|2+sin 1/x| £ 1 Þ g=O(f).

7. x2 = o(x) при x ® 0, так як limx ® 0x2/x = limx ® 0x = 0;

8.1/x2 = o(1/x) при x ® + ¥ так як limx ® ¥x/x2 = limx ® ¥1/x = 0

9.Знайти границю

Розв’язування. Використовуючи асимптотическое равенство (3) и асимптотическое равенство (1), а также учитывая, что x2 = o(x) при x® 0 (см. пример 15) и f=o(x2) является функцией o(x) при x® 0, найдем

ЕКВІВАЛЕНТНІ ФУНКЦІЇ

Якщо функція замінюється на де якому кроці через , то різницяь називається абсолютною похибкою, а відношення — відносною похибкою зробленої заміни. Якщо вивчається поведінка функції при то часто доцільно замінити її функцією такої, що 1) функція в певному значенні більш проста, ніж функція ; 2) абсолютна похибка прямує до нуля при

В цьому випадку говорять, що наближає функцію поблизу точки . Такою властивістю володіють наприклад, всі нескінченно малі при функції f і g. Нижче показано, що серед них лише ті, які еквівалентні між собою:

володіють тією властивістю, що не тільки абсолютна похибка , але і відносна прямує до нуля при

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Еліпсоїд

1) Еліпсоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням. Рівняння (1) називається канонічним рівнянням еліпсоїда. Дослідження форми еліпсоїда проведемо методом паралельних перерізів. Для цього розглянемо перерізи даного еліпсоїда площинами, паралельними площині Оху. Кожна з таких площин визначається рівнянням z=g, де h – довільне дійсне число, а лінія, яка утвориться і перерізі, визначається рівняннями += 1 - ; z=h. Дослідимо рівняння (2) при різних значення h. Якщо >c, ...

Інтегрування виразів, що містять тригонометричні функції. Приклади первісних, що не є елементарними функціями

План Інтегрування виразів, що містять тригонометричні функції Інтеграли вигляду Інтеграли вигляду Інтеграли вигляду · Інтеграли вигляду Інтеграли вигляду( - ціле, додатне число) Інтеграли вигляду 8.3.9. Інтегрування трансцендентних функцій а) Усі інтеграли вигляду інтегруються в замкненому вигляді. Тут - символ раціональної функції. Справді, підстановка зводить цей інтеграл до вигляду Приклад. За допомогою заміни інтеграл перетворюється в такий : б) Як уже зазначалося, інтеграли зводяться до розглядуваного. ...

Достатні ознаки збіжності рядів з додатніми членами, ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші

План Ознаки порівняння рядів з додатними членами Ознака Даламбера Радикальна ознака Коші Інтегральна ознака Коші 13.3. Ознаки порівняння рядів з додатними членами Збіжність чи розбіжність знакододатного ряду часто встановлюється шляхом порівняння його з іншим рядом, наперед відомо збіжним або розбіжним. В основі такого порівняння лежать наступні теореми. Нехай задані два ряди з додатними членами (13.4) (13.5) Теорема.1 Якщо члени ряду (13.4) не більші відповідних членів ряду (13.5), тобто , то із збіжності ряду ...