Search:

Порівняння функцій та їх застосування

Як приклад на поводження з цими символами доведемо рівність

(1.31)

де с - стала.

Згідно сказаному, треба показати, що якщо , то . Дійсно, якщо , то , де0. Покладемо тоді де, очевидно і, значить, .

На закінчення відзначимо, що сказане про використовування символів О і о не виключає, звичайно, того, що окремі формули з цими символами можуть виявитися справедливими не тільки при читанні зліва направо, але і справа наліво; так, формула (1.31) при вірна і при читанні справа наліво.

Приклади.

1.;

тому

2.

3., бо

4.Так як |1/x2| £ |1/x| при |x| ³ 1, то 1/x2 = O(1/x) при x ® ¥;

5.1/x = O(1/x2) при x® 0 так как |1/x|£ 1/x2 при |x|£ 1.

6.Функції f(x) = x(2+sin 1/x) g(x) = x x ® 0 являються нескінчено малими одного порядку при x® a , так як

f/g = (x(2+sin 1/x))/x = 2+sin 1/x = |2+sin 1/x| £ 3 Þ f=O(g), g/f = 1/|2+sin 1/x| £ 1 Þ g=O(f).

7. x2 = o(x) при x ® 0, так як limx ® 0x2/x = limx ® 0x = 0;

8.1/x2 = o(1/x) при x ® + ¥ так як limx ® ¥x/x2 = limx ® ¥1/x = 0

9.Знайти границю

Розв’язування. Використовуючи асимптотическое равенство (3) и асимптотическое равенство (1), а также учитывая, что x2 = o(x) при x® 0 (см. пример 15) и f=o(x2) является функцией o(x) при x® 0, найдем

ЕКВІВАЛЕНТНІ ФУНКЦІЇ

Якщо функція замінюється на де якому кроці через , то різницяь називається абсолютною похибкою, а відношення — відносною похибкою зробленої заміни. Якщо вивчається поведінка функції при то часто доцільно замінити її функцією такої, що 1) функція в певному значенні більш проста, ніж функція ; 2) абсолютна похибка прямує до нуля при

В цьому випадку говорять, що наближає функцію поблизу точки . Такою властивістю володіють наприклад, всі нескінченно малі при функції f і g. Нижче показано, що серед них лише ті, які еквівалентні між собою:

володіють тією властивістю, що не тільки абсолютна похибка , але і відносна прямує до нуля при

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Остроградський Михайло Васильйович

Остроградський Михайло Васильович (1801-1862) математик Народився в селi Пашенна на Полтавщині. У 1816—1821 рр. навчався в Харківському університеті. В 1822—1827 рр. вдосконалював математичну освіту у Франції: слухав математичні курси на Паризькому факультеті наук і в Коллеж де Франс, що дозволило йому називати своїми вчителями таких великих французьких учених, як О.Л.Коші, Л.Пуансо, Ж.Ф.М.Біне, Ж.Ш.Ф.Штурма, Г.Ламе. З 1828 р. М.В.Остроградський працював у Петербурзі: у Морському кадетському корпусі, з 1830 р. — в ...

Інтегровані типи д-р 1-го порядку, розвязаних відносно похідної

а). Неповні р-ня. ДР, яке не містить шуканої функції. Має вигляд , (2.33) Припустимо, що f(x) являється неперервною на функцією. Тоді ф-я (2.34) являэться загальним розв`язком д-р (1) в області a < x < b, -< y < + .(2.35) Особливих розвязків ДР (2.33) немає. Разом з ДР (2.33) розглянемо початкові умови (2.36) Проінтегруємо ДР (2.34) від до x Знаходимо с з умови (2.36) (2.37) - загальний розвязок ДР (2.33) в формі Коші. Якщо f(x) - неперервна на за виключенням точки , в якій приймає нескінченне значення, то ...

Індекси у статистиці

План лекції Суть індексів і їх роль у статистичному аналізі. Методологічні принципи побудови індексів. Агрегатні індекси. Обчислення основних економічних індексів. Середньозважені індекси. 1. Індексом у статистиці називається відносний показник, який характеризує зміну явища у часі, просторі або порівняно з планом. Його отримують порівнянням числових значень однойменних показників, що мають однаковий економічний зміст. Слово “індекс” у статистиці означає узагальнюючий показник, який характеризує рівень досліджуваного явища ...