Search:

Порівняння функцій та їх застосування

Як приклад на поводження з цими символами доведемо рівність

(1.31)

де с - стала.

Згідно сказаному, треба показати, що якщо , то . Дійсно, якщо , то , де0. Покладемо тоді де, очевидно і, значить, .

На закінчення відзначимо, що сказане про використовування символів О і о не виключає, звичайно, того, що окремі формули з цими символами можуть виявитися справедливими не тільки при читанні зліва направо, але і справа наліво; так, формула (1.31) при вірна і при читанні справа наліво.

Приклади.

1.;

тому

2.

3., бо

4.Так як |1/x2| £ |1/x| при |x| ³ 1, то 1/x2 = O(1/x) при x ® ¥;

5.1/x = O(1/x2) при x® 0 так как |1/x|£ 1/x2 при |x|£ 1.

6.Функції f(x) = x(2+sin 1/x) g(x) = x x ® 0 являються нескінчено малими одного порядку при x® a , так як

f/g = (x(2+sin 1/x))/x = 2+sin 1/x = |2+sin 1/x| £ 3 Þ f=O(g), g/f = 1/|2+sin 1/x| £ 1 Þ g=O(f).

7. x2 = o(x) при x ® 0, так як limx ® 0x2/x = limx ® 0x = 0;

8.1/x2 = o(1/x) при x ® + ¥ так як limx ® ¥x/x2 = limx ® ¥1/x = 0

9.Знайти границю

Розв’язування. Використовуючи асимптотическое равенство (3) и асимптотическое равенство (1), а также учитывая, что x2 = o(x) при x® 0 (см. пример 15) и f=o(x2) является функцией o(x) при x® 0, найдем

ЕКВІВАЛЕНТНІ ФУНКЦІЇ

Якщо функція замінюється на де якому кроці через , то різницяь називається абсолютною похибкою, а відношення — відносною похибкою зробленої заміни. Якщо вивчається поведінка функції при то часто доцільно замінити її функцією такої, що 1) функція в певному значенні більш проста, ніж функція ; 2) абсолютна похибка прямує до нуля при

В цьому випадку говорять, що наближає функцію поблизу точки . Такою властивістю володіють наприклад, всі нескінченно малі при функції f і g. Нижче показано, що серед них лише ті, які еквівалентні між собою:

володіють тією властивістю, що не тільки абсолютна похибка , але і відносна прямує до нуля при

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Диференціал функції, його геометричний зміст. Лінеаризація функції. Диференціал складної функції

Поняття диференціала тісно пов'язане з поняттям похідної, і е одним з найважливіших в математиці. Диференціал наближено до­рівнює приросту функції і пропорційний приросту аргументу. Вна­слідок цього диференціал широко застосовується при дослідженні різ­номанітних процесів і явищ. Будь-який процес протягом достатньо малого проміжку часу змінюється майже рівномірно, тому дійсний приріст величини, що характеризує процес, можна замінити дифе­ренціалом цієї величини на даному проміжку часу. Таку заміну на­зивають ...

Матриці. Загальна інформація

Основні означення Прямокутна таблиця чисел aij = 1, 2, .... m; j= 1, 2, ..., n, скла­дена з m рядків та n стовпців і записана у вигляді або називається матрицею. Поняття матриці вперше ввели англійські математики У. Гамільтон і Д. Келі. Коротко матрицю позначають так: або де aij — елементи матриці, причому індекс і в елементі aij означає но­мер рядка, aj— номер стовпця, на перетині яких стоїть даний елемент. Добуток числа рядків m на число стовпців n називають розміром матриці і позначають m X n. Якщо хочуть вказати ...

Циліндр

Це фігура, що складається із двох кіл, що сполучають паралельним переносом і всіма відрізками, що з'єднують відповідні крапки цих кіл. Властивості: 1. Основи рівні й паралельні . 2. Твірні рівні й паралельні (із властивостей паралельного переносу, по властивості паралельних площин). Циліндр називається прямим, якщо твірні перпендикулярні основі. У прямому циліндрі : вісь = висота = твірна. Переріз: Осьовий переріз Бічна поверхня циліндра: L-довжина кола L=2ПR ...