Search:

Порівняння функцій та їх застосування

Як приклад на поводження з цими символами доведемо рівність

(1.31)

де с - стала.

Згідно сказаному, треба показати, що якщо , то . Дійсно, якщо , то , де0. Покладемо тоді де, очевидно і, значить, .

На закінчення відзначимо, що сказане про використовування символів О і о не виключає, звичайно, того, що окремі формули з цими символами можуть виявитися справедливими не тільки при читанні зліва направо, але і справа наліво; так, формула (1.31) при вірна і при читанні справа наліво.

Приклади.

1.;

тому

2.

3., бо

4.Так як |1/x2| £ |1/x| при |x| ³ 1, то 1/x2 = O(1/x) при x ® ¥;

5.1/x = O(1/x2) при x® 0 так как |1/x|£ 1/x2 при |x|£ 1.

6.Функції f(x) = x(2+sin 1/x) g(x) = x x ® 0 являються нескінчено малими одного порядку при x® a , так як

f/g = (x(2+sin 1/x))/x = 2+sin 1/x = |2+sin 1/x| £ 3 Þ f=O(g), g/f = 1/|2+sin 1/x| £ 1 Þ g=O(f).

7. x2 = o(x) при x ® 0, так як limx ® 0x2/x = limx ® 0x = 0;

8.1/x2 = o(1/x) при x ® + ¥ так як limx ® ¥x/x2 = limx ® ¥1/x = 0

9.Знайти границю

Розв’язування. Використовуючи асимптотическое равенство (3) и асимптотическое равенство (1), а также учитывая, что x2 = o(x) при x® 0 (см. пример 15) и f=o(x2) является функцией o(x) при x® 0, найдем

ЕКВІВАЛЕНТНІ ФУНКЦІЇ

Якщо функція замінюється на де якому кроці через , то різницяь називається абсолютною похибкою, а відношення — відносною похибкою зробленої заміни. Якщо вивчається поведінка функції при то часто доцільно замінити її функцією такої, що 1) функція в певному значенні більш проста, ніж функція ; 2) абсолютна похибка прямує до нуля при

В цьому випадку говорять, що наближає функцію поблизу точки . Такою властивістю володіють наприклад, всі нескінченно малі при функції f і g. Нижче показано, що серед них лише ті, які еквівалентні між собою:

володіють тією властивістю, що не тільки абсолютна похибка , але і відносна прямує до нуля при

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Тригонометричні функції

1. Стисненням заготовки на прокатному стані на­зивають величину де і — товщини заготовки до і після прокатування. Доведіть, що -, де d — діаметр вала і — кут захвату. Вказівка. З прямокутного трикутника АОВ: ОВ = 0,5d cos, = 2. 2. Схили двосхилого і схили ABFE і CDEF чотири­схилого даху з горизонтальною площиною утворюють кут , а схили ADE і BCF — кут . Для якого даху — дво- чи чотирисхилого потрібно менше мате­ріалу? Вказівка. Площа двосхилого даху , а чотирисхилого - . Щоб порівняти ці площі, розглянемо їх різницю ...

Інтегрування з допомогою заміни змінної. Інтегрування частинами

План Інтегрування частинами Інтегрування часток Заміна змінної 1. Інтегрування частинами Нехай і – диференційовані функції на Тоді або Звідси (8.16) Формула (8.16) називається формулою інтегрування частинами в невизначеному інтегралі. Користуючись формулою (8.16), рекомендується обчислення інтегралів від таких функцій : де –поліном , – раціональна функція . Описати всі можливі випадки застосування формули інтегрування частинами неможливо. Інтегруючи такі вирази, завжди виникає дилема : що взяти за, а що – ...

Архімед

Архімед народився у 287 році до нашої ери у грецькому місті Сіракузи, де і прожив майже усе своє життя. Його батьком був Фідій, астроном при дворі правителя міста Гієрона. Учився Архімед в Олександрії, де правителі Єгипту Птолемеї зібрали найкращих грецьких вчених і мислителів, а також заснували найбільшу у світі бібліотеку. Після навчання в Олександрії Архімед знову повернувся в Сіракузи й успадкував посаду свого батька. Основні роботи Архімеда стосувалися різних практичних додатків математики (геометрії), фізики, ...