Search:

Порівняння функцій та їх застосування

В цьому значенні функції, еквівалентні заданій, наближають її краще, ніж інші функції навіть того ж порядку, що і дана при

Наприклад, функції є нескінченно малими при так само як і а тому абсолютні похибки при заміні sin кожна з них прямує до нуля при

Але лише одна зі всіх перерахованих функцій, а саме: має ту властивість, що відносна похибка при заміні цією функцією прямуватиме до нуля при

Прямування відносної похибки до нуля при можна записати, використовуючи символ “o мале»:

Сформулюємо сказану характеристичну властивість еквівалентних функцій у вигляді теореми.

Теорема 1. Для того, щоб функції і були еквівалентними при необхідно і достатньо, щоб при виконувалася умова

(1.32)

Доведення необхідності. Нехай при тобто

де . Тоді

де при , тобто маємо (1.32).

Доведення достатності. Нехай виконується умова (1.32), тобто

де . Тоді

де при тобто при

Отже, ми показали, що функції і еквівалентні при тоді і тільки тоді, коли відносна похідна (або прямує до нуля при )

Наслідок. Нехай де с - стала. Тоді f~cg і g=cf+o(f) при

Доведення. Якщо , то , і значить при . Звідси, з теореми 1 маємо а значить (див. кінець п. 1.2) .

Теорема 2. Нехай ~ і ~ при Тоді якщо існує

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Зв’язок між розв’язками прямої і двоїстої задач. Геометрична інтерпретація двоїстих задач

Розглянемо кілька двоїстих задач, утворену основною задачею лінійного програмування і двоїстої до неї. Вихідною задачею є: найти максимум функції (1) при умовах (2) (3) Двоїста задача: знайти мінімум функції (4) при умовах (5) Кожна з задач двоїстої пари (1) — (3) і (4), (5) фактично є самостійною задачею лінійного програмування і може бути вирішена незалежно одна від іншої. Однак при визначенні симплексним методом оптимального плану однієї з задач тим самим знаходиться рішення й інша задача. Існуючі залежності між ...

Невласні інтеграли

План Наближене обчислення означених інтегралів Формула прямокутників Формула трапецій Формула парабол (Сімпсона) 1. Наближені методи обчислення інтегралів В усіх випадках, коли розглянуті раніше методи знаходження первісних, не приводять до мети внаслідок того, що інтеграл не виражається через елементарні функції, і особливо тоді, коли підінтегральна функція задана таблицею (або графіком), доводиться повертатися до означення інтеграла як границі інтегральної суми. На основі цього існує ряд методів наближеного обчислення ...

Розв’язання задач на застосування векторів

Мета. Навчитися застосовувати вектори до розв’язання аналітичних, геометричних прикладних задач. Задачі аналітичного характеру. 1.Довести, що АВС рівнобедрений, прямокутний, якщо А(1;0), В(1;3), С(4;3). Розв’язання Знайти довжини сторін Оскільки АВ=ВС, то АСВ – рівнобедрений. 18=18, виконується теорема Піфагора, а значить АСВ – прямокутний. Отже, АСВ – рівнобедрений і прямокутний. 2.Дано вершити чотирикутника А(6; -1), В(5; 1), С(1; 2) і Д(2;-4). Довести, що АС+ВД. Задачі геометричного характеру. Знайти довжини ...