Search:

Порівняння функцій та їх застосування

В цьому значенні функції, еквівалентні заданій, наближають її краще, ніж інші функції навіть того ж порядку, що і дана при

Наприклад, функції є нескінченно малими при так само як і а тому абсолютні похибки при заміні sin кожна з них прямує до нуля при

Але лише одна зі всіх перерахованих функцій, а саме: має ту властивість, що відносна похибка при заміні цією функцією прямуватиме до нуля при

Прямування відносної похибки до нуля при можна записати, використовуючи символ “o мале»:

Сформулюємо сказану характеристичну властивість еквівалентних функцій у вигляді теореми.

Теорема 1. Для того, щоб функції і були еквівалентними при необхідно і достатньо, щоб при виконувалася умова

(1.32)

Доведення необхідності. Нехай при тобто

де . Тоді

де при , тобто маємо (1.32).

Доведення достатності. Нехай виконується умова (1.32), тобто

де . Тоді

де при тобто при

Отже, ми показали, що функції і еквівалентні при тоді і тільки тоді, коли відносна похідна (або прямує до нуля при )

Наслідок. Нехай де с - стала. Тоді f~cg і g=cf+o(f) при

Доведення. Якщо , то , і значить при . Звідси, з теореми 1 маємо а значить (див. кінець п. 1.2) .

Теорема 2. Нехай ~ і ~ при Тоді якщо існує

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Диференціал

План Диференціал функції. Геометричний зміст диференціала. Лінеаризація функції. Диференціал складної функції. Повний диференціал функції декількох змінних. Достатні умови диференційованості функції. Рівняння дотичної площини до поверхні і нормалі. Інваріантність форми диференціала. Диференціювання функцій, заданих параметрично. Неявні функції, їх диференціювання. 1. Диференціал функції 1.1 Означення диференційованої функції Означення. Функція називається диференційованою в точці , якщо її приріст в цій точці ...

Зв’язок між розв’язками прямої і двоїстої задач. Геометрична інтерпретація двоїстих задач

Розглянемо кілька двоїстих задач, утворену основною задачею лінійного програмування і двоїстої до неї. Вихідною задачею є: найти максимум функції (1) при умовах (2) (3) Двоїста задача: знайти мінімум функції (4) при умовах (5) Кожна з задач двоїстої пари (1) — (3) і (4), (5) фактично є самостійною задачею лінійного програмування і може бути вирішена незалежно одна від іншої. Однак при визначенні симплексним методом оптимального плану однієї з задач тим самим знаходиться рішення й інша задача. Існуючі залежності між ...

Порівняння функцій та їх застосування

ЗМІСТ Вступ 3 1. ПОРІВНЯННЯ ФУНКЦІЙ. ОБЧИСЛЕННЯ ГРАНИЦЬ 4 §1. ДЕЯКІ ЧУДОВІ ГРАНИЦІ 4 §2. ПОРІВНЯННЯ ФУНКЦІЙ 9 §3. ЕКВІВАЛЕНТНІ ФУНКЦІЇ 18 §4. МЕТОД ВИДІЛЕННЯ ГОЛОВНОЇ ЧАСТИНИ ФУНКЦІЇ І ЙОГО ЗАСТОСУВАННЯ ДО ОБЧИСЛЕННЯ ГРАНИЦЬ. 21 ВИСНОВОК 26 Вступ Нехай дано множину Е дійсних чисел. Якщо кожному числу за певним законом поставлено у відповідність одне дійсне число y, то кажуть, що на множині Е задана (визначена) функція, і записують . При цьому x називають незалежною змінною, або аргументом, а y – залежною змінною, або ...