Search:

Порівняння функцій та їх застосування

В цьому значенні функції, еквівалентні заданій, наближають її краще, ніж інші функції навіть того ж порядку, що і дана при

Наприклад, функції є нескінченно малими при так само як і а тому абсолютні похибки при заміні sin кожна з них прямує до нуля при

Але лише одна зі всіх перерахованих функцій, а саме: має ту властивість, що відносна похибка при заміні цією функцією прямуватиме до нуля при

Прямування відносної похибки до нуля при можна записати, використовуючи символ “o мале»:

Сформулюємо сказану характеристичну властивість еквівалентних функцій у вигляді теореми.

Теорема 1. Для того, щоб функції і були еквівалентними при необхідно і достатньо, щоб при виконувалася умова

(1.32)

Доведення необхідності. Нехай при тобто

де . Тоді

де при , тобто маємо (1.32).

Доведення достатності. Нехай виконується умова (1.32), тобто

де . Тоді

де при тобто при

Отже, ми показали, що функції і еквівалентні при тоді і тільки тоді, коли відносна похідна (або прямує до нуля при )

Наслідок. Нехай де с - стала. Тоді f~cg і g=cf+o(f) при

Доведення. Якщо , то , і значить при . Звідси, з теореми 1 маємо а значить (див. кінець п. 1.2) .

Теорема 2. Нехай ~ і ~ при Тоді якщо існує

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Архімед

Архімед народився у 287 році до нашої ери у грецькому місті Сіракузи, де і прожив майже усе своє життя. Його батьком був Фідій, астроном при дворі правителя міста Гієрона. Учився Архімед в Олександрії, де правителі Єгипту Птолемеї зібрали найкращих грецьких вчених і мислителів, а також заснували найбільшу у світі бібліотеку. Після навчання в Олександрії Архімед знову повернувся в Сіракузи й успадкував посаду свого батька. Основні роботи Архімеда стосувалися різних практичних додатків математики (геометрії), фізики, ...

Інтеграл Ейлера

(1)   Функція досягає свого найбільшого значення 1 при t = 0. Отже, при t > 0 і t < 0. Беручи t = ±х2, дістаємо: звідки (2) (3) Підносячи вирази (63) і (64) до степеня з будь-яким натураль­ним показником n, маємо: (4) (5) Інтегруючи нерівність (65) на проміжку від 0 до 1, а нерівність (6) — від 0 до +, дістаємо: . Водночас виконуються такі співвідношення: 1) ; 2) ; 3) . Звідси Підносячи до квадрата і перетворюючи вираз (67), дістаємо: .(7) Із формули Вілліса випливає, що обидва крайні вирази у (68) при п ...

Біографія Піфагора – видатного математика та вченого

В VI столітті до нашої ери осередком грецької науки та мистецтва стала Іонія- група островів Егейського моря, які знаходяться біля берегів Малої Азії. Там у сім’ї золотих справ майстра Мнесарха народився син. За легендою, в Дельтах, куди приїхали Мнесарх з дружиною Парфенісою,- чи по справам, чи у весільну подорож оракул пророчив їм народження сина, який буде славитися віками своєю мудрістю, справами та красою. Бог Аполлон, вустами оракла, радить їм плити в Сірію. Пророцво збувається- в Сидоні Парфеніса народила хлопчика. І ...