Search:

Порівняння функцій та їх застосування

В цьому значенні функції, еквівалентні заданій, наближають її краще, ніж інші функції навіть того ж порядку, що і дана при

Наприклад, функції є нескінченно малими при так само як і а тому абсолютні похибки при заміні sin кожна з них прямує до нуля при

Але лише одна зі всіх перерахованих функцій, а саме: має ту властивість, що відносна похибка при заміні цією функцією прямуватиме до нуля при

Прямування відносної похибки до нуля при можна записати, використовуючи символ “o мале»:

Сформулюємо сказану характеристичну властивість еквівалентних функцій у вигляді теореми.

Теорема 1. Для того, щоб функції і були еквівалентними при необхідно і достатньо, щоб при виконувалася умова

(1.32)

Доведення необхідності. Нехай при тобто

де . Тоді

де при , тобто маємо (1.32).

Доведення достатності. Нехай виконується умова (1.32), тобто

де . Тоді

де при тобто при

Отже, ми показали, що функції і еквівалентні при тоді і тільки тоді, коли відносна похідна (або прямує до нуля при )

Наслідок. Нехай де с - стала. Тоді f~cg і g=cf+o(f) при

Доведення. Якщо , то , і значить при . Звідси, з теореми 1 маємо а значить (див. кінець п. 1.2) .

Теорема 2. Нехай ~ і ~ при Тоді якщо існує

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Схеми застосування інтеграла до знаходження геометричних і фізичних величин. Обчислення площ плоских фігур в декартових і полярних координатах

План Схеми застосування інтеграла до знаходження геометричних і фізичних величин Обчислення площі плоскої фігури Обчислення площі в декартових координатах Площа криволінійного сектора в полярних координатах ЗАСТОСУВАННЯ ВИЗНАЧЕНОГО ІНТЕГРАЛА 1. Площа плоскої фігури 1.1. Обчислення площі в декартових координатах В п.9.2. мова йшла про те, коли розглядається площа криволінійної трапеції, обмеженої віссю кривою причому на відрізку може бути як додатною, так і від’ємною, то площа такої криволінійної трапеції обчислюється ...

Тригонометричні функції

1. Стисненням заготовки на прокатному стані на­зивають величину де і — товщини заготовки до і після прокатування. Доведіть, що -, де d — діаметр вала і — кут захвату. Вказівка. З прямокутного трикутника АОВ: ОВ = 0,5d cos, = 2. 2. Схили двосхилого і схили ABFE і CDEF чотири­схилого даху з горизонтальною площиною утворюють кут , а схили ADE і BCF — кут . Для якого даху — дво- чи чотирисхилого потрібно менше мате­ріалу? Вказівка. Площа двосхилого даху , а чотирисхилого - . Щоб порівняти ці площі, розглянемо їх різницю ...

Диференціал

План Диференціал функції. Геометричний зміст диференціала. Лінеаризація функції. Диференціал складної функції. Повний диференціал функції декількох змінних. Достатні умови диференційованості функції. Рівняння дотичної площини до поверхні і нормалі. Інваріантність форми диференціала. Диференціювання функцій, заданих параметрично. Неявні функції, їх диференціювання. 1. Диференціал функції 1.1 Означення диференційованої функції Означення. Функція називається диференційованою в точці , якщо її приріст в цій точці ...