Search:

Порівняння функцій та їх застосування

В цьому значенні функції, еквівалентні заданій, наближають її краще, ніж інші функції навіть того ж порядку, що і дана при

Наприклад, функції є нескінченно малими при так само як і а тому абсолютні похибки при заміні sin кожна з них прямує до нуля при

Але лише одна зі всіх перерахованих функцій, а саме: має ту властивість, що відносна похибка при заміні цією функцією прямуватиме до нуля при

Прямування відносної похибки до нуля при можна записати, використовуючи символ “o мале»:

Сформулюємо сказану характеристичну властивість еквівалентних функцій у вигляді теореми.

Теорема 1. Для того, щоб функції і були еквівалентними при необхідно і достатньо, щоб при виконувалася умова

(1.32)

Доведення необхідності. Нехай при тобто

де . Тоді

де при , тобто маємо (1.32).

Доведення достатності. Нехай виконується умова (1.32), тобто

де . Тоді

де при тобто при

Отже, ми показали, що функції і еквівалентні при тоді і тільки тоді, коли відносна похідна (або прямує до нуля при )

Наслідок. Нехай де с - стала. Тоді f~cg і g=cf+o(f) при

Доведення. Якщо , то , і значить при . Звідси, з теореми 1 маємо а значить (див. кінець п. 1.2) .

Теорема 2. Нехай ~ і ~ при Тоді якщо існує

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12 


Подібні реферати:

Схеми застосування інтеграла до знаходження геометричних і фізичних величин. Обчислення площ плоских фігур в декартових і полярних координатах

План Схеми застосування інтеграла до знаходження геометричних і фізичних величин Обчислення площі плоскої фігури Обчислення площі в декартових координатах Площа криволінійного сектора в полярних координатах ЗАСТОСУВАННЯ ВИЗНАЧЕНОГО ІНТЕГРАЛА 1. Площа плоскої фігури 1.1. Обчислення площі в декартових координатах В п.9.2. мова йшла про те, коли розглядається площа криволінійної трапеції, обмеженої віссю кривою причому на відрізку може бути як додатною, так і від’ємною, то площа такої криволінійної трапеції обчислюється ...

Біографія Піфагора – видатного математика та вченого

В VI столітті до нашої ери осередком грецької науки та мистецтва стала Іонія- група островів Егейського моря, які знаходяться біля берегів Малої Азії. Там у сім’ї золотих справ майстра Мнесарха народився син. За легендою, в Дельтах, куди приїхали Мнесарх з дружиною Парфенісою,- чи по справам, чи у весільну подорож оракул пророчив їм народження сина, який буде славитися віками своєю мудрістю, справами та красою. Бог Аполлон, вустами оракла, радить їм плити в Сірію. Пророцво збувається- в Сидоні Парфеніса народила хлопчика. І ...

Лінійні, однорідні та неоднорідні різницеві рівняння

Лінійні різницеві рівняння зі сталими коефіцієнтами Означення. Лінійним різницевим рівнянням n-го порядку називається рівняння (1) де - сталі коефіцієнти. Якщо виразимо оператори різниць через оператор зсуву S, то можемо записати різницеве рівняння в рівнозначній формі (2) Число n називається порядком різницевого рівняння. Це рівняння можна також записати в операторній формі (3) Якщо , то різницеве рівняння називається однорідним, якщо , то рівняння називається неоднорідним. Нагадаємо, що оператор зсуву S (4) Далі, ...