Search:

Властивості визначеного інтеграла

Реферати » Математика » Властивості визначеного інтеграла

1. Властивості визначеного інтеграла

10 Величина визначеного інтеграла не залежить від позначення змінної інтегрування:

тощо.

Інтегральна сума, а отже, і її границя не залежать від того, якою буквою позначено аргумент функції f. Це й означає, що визначений інтеграл не залежить від позначення змінної інтегрування.

Визначений інтеграл введений для випадку, коли a<b. Узагальнимо поняття інтеграла на випадки, коли a=b i a>b.

20. Визначений інтеграл з однаковими межами інтегрування дорівнює нулю:

30. Від переставлення меж інтегрування інтеграл змінює знак на протилежний:

(33)

Властивості 20 і 30 приймають за означенням. Відзначимо, що ці означення повністю виправдовує наведена далі формула Ньютона – Лейбніца.

40. Якщо функція f(x) інтегрована на максимальному з відрізків [a;b], [a;c], [c;b], то справедлива рівність

(34)

(адитивність визначеного інтеграла).

Припустимо спочатку, що a<c<b. Оскільки границя інтегральної суми не залежить від способу розбиття відрізка [a;b] на частинні відрізки, то розіб’ємо [a;b] так, щоб точка с була точкою розбиття. Якщо, наприклад, с=хт , то інтегральну суму можна розбити на дві суми:

.

Переходячи в цій рівності до границі при , дістанемо формулу (34).

Інше розміщення точок a, b, с зводиться до вже розглянутого.

Якщо, наприклад, a<b<c, то за формулами (34) і (33) маємо

На рис. 7.5 показано геометрично цю властивість для випадку, коли і a<b<c: площа трапеції aABb дорівнює сумі площ трапеції aACc i cCBb.

Зауваження. Нехай f(x) – знакозмінна неперервна функція на відрізку [a;b], де a<b, наприклад, (рис.7.6)

Скориставшись адитивністю та геометричним змістом інтеграла, дістанемо

де S1, S2, S3 – площі відповідних криволінійних трапецій.

Отже, в загальному випадку, з погляду геометрії визначений інтеграл (27) при a<b дорівнює алгебраїчній сумі площ відповідних криволінійних трапецій, розміщених над віссю Ох, мають знак плюс, а нижче осі Ох – знак мінус. Якщо a>b то все формулюється навпаки .

Зазначимо, що площа заштрихованої на рис. 7.6 фігури виражається інтегралом

50. Сталий множник С можна винести за знак визначеного інтеграла

(35)

Дійсно

60. Визначений інтеграл від суми інтегрованих функцій дорівнює сумі визначених інтегралів від цих функцій:

(36)

Для довільного τ – розбиття маємо

Звідси, переходячи до границі при дістанемо формулу (36). Ця властивість має місце для довільного скінченого числа доданків.

Властивості 50 і 60 називають лінійністю визначеного інтервала.

70. Якщо всюди на відрізку [a;b] маємо , то

(37)

(збереження знака підінтегральної функції визначеним інтегралом).

Оскільки

то будь-яка інтегральна сума і її границя при , теж невід’ємна.

80. Якщо всюди на відрізку [a;b] маємо , то

(38)

(монотонність визначеного інтеграла).

Оскільки то з нерівності (37) маємо

Перейти на сторінку номер:
 1  2 


Подібні реферати:

Степеневі ряди. Теорема Абеля. Область збіжності степеневого ряду

План Розвинення функції у степеневий ряд. Контрольні запитання Яке розвинення в степеневий ряд функції ex. Яке розвинення в степеневий ряд функції sin x. Яке розвинення в степеневий ряд функції cos x. Яке розвинення в степеневий ряд функції ln(1+x). Яке розвинення в степеневий ряд функції arctg x Література Соколенко О.І. Вища математика: Підручник. – К.: Видавничий центр „Академія”, 2002. – 432с. Розвинення в степеневі ряди функцій, ex, sinx,cosx Додатковий член формули Тейлора у формі Лагранжа для функції f(x)=ex має ...

Історія розвитку системи одиниць величин

З історії розвитку системи одиниць величин. Людина давно визнала необхідність вимірювати різні величини, причому виміряти як можна точніше. Основою точних вимірювань являються зручні, чітко визначені одиниці величин і еталони цих одиниць. В свою чергу, точність еталонів відображає рівень розвитку науки, техніки, говорить про науково-технічний потенціал країни. В історії розвитку одиниць величин можна виділити кілька періодів. Самим давнім являється період, коли одиниці довжини ототожнювалися з назвами частин людського тіла. ...

Теорія імовірностей та математична статистика

Теоретичні відомості: Набір експерементальних даних будем позначатиx, …,x. Однорідний набір спостережень називається вибіркою з генеральної сукупності. Генеральна сукупність - універсальна множина значень(проявів) цього явища. Кількість елементів вибірки називають об'ємом вибірки. Вибіркові значення називають ще й статистичним розподілом, якщо їх спеціальним чином перетворити. З однієї генеральної сукупності можна отримати різні вибірки, тому вибірку називають статистичною змінною, які в свою чергу бувають: дискретними ...