Search:

Функція Гріна

Реферати » Математика » Функція Гріна

Нехай в банаховому просторі Z визначена крайова задача

(1)

де

для довільного і являються лінійними обмеженими операторами, які діють в Z,

ряди в правих частинах (1) збігаються у рівномірної операторної топології при , , , ,

, , сильно неперервні при ,

,

оператор , де - оператор Коші однорідного рівняння

, (2)

є - оператор [1] з

Лема. Якщо власна функція крайової задачі

, , (3)

відносно операторів і , утворює узагальнений Жорданов ланцюг приєднаних функцій , скінченої довжини , то для достатньо малих крайова задача (1) має єдиний розв’язок.

Теорема. Якщо виконуються умови леми, то для крайової задачі (1) існує функція Гріна і для неї має місто лорановський розклад

,

де

де

- власна функція крайової задачі, спряженої до задачі (3); - узагальнений жорданів ланцюг, відносно операторів ,спряжений до ланцюга

- узагальнено обернений до ;

- розв’язки задач Коші

- розв’язки задач Коші


Використана література

М.М. Вайнберг, В.А. Треногин Теория ветвления решений нелинейных уравнений «Наука», М., 1969., 527с.




Подібні реферати:

Теорія імовірностей та математична статистика

Теоретичні відомості: Набір експерементальних даних будем позначатиx, …,x. Однорідний набір спостережень називається вибіркою з генеральної сукупності. Генеральна сукупність - універсальна множина значень(проявів) цього явища. Кількість елементів вибірки називають об'ємом вибірки. Вибіркові значення називають ще й статистичним розподілом, якщо їх спеціальним чином перетворити. З однієї генеральної сукупності можна отримати різні вибірки, тому вибірку називають статистичною змінною, які в свою чергу бувають: дискретними ...

Невласні інтеграли з безмежними границями та з необмеженою підінтегральною функцією

Згідно з теоремою існування визначеного інтеграла цей інте­грал існує, якщо виконані умови: 1) відрізок інтегрування [а, b] скінчений; 2) підінтегральна функція f(x) неперервна або обмежена і має скінченну кількість точок розриву. Якщо хоч би одна із умов не виконується, то визначений інтеграл називають невласним. Якщо не виконується перша умова, тобто b = ∞ або а = ∞ або а = -∞ та b = ∞, то інтеграли називають невласними інтегралами з нескінченними межами. Якщо не виконується лише друга умова, то ...

Функції та способи їх задання

План 1. Деякі властивості функції. 2. Області визначення та значення функції заданої аналітично. 3. Основні елементарні функції. 4. Складні та елементарні функції. ВСТУП ДО МАТЕМАТИЧНОГО АНАЛІЗУ ФУНКЦІЯ Поняття функціональної залежності Величина називається змінною (сталою), якщо в умовах даної задачі набуває різних (тільки одне) значень. Розглянемо дві змінні величини . Означення: Функцією у = f(x) називається така відповідність між множинами D і Е, при якій кожному значенню змінної х відповідає одне й тільки одне значення ...