Search:

Функція Гріна

Реферати » Математика » Функція Гріна

Нехай в банаховому просторі Z визначена крайова задача

(1)

де

для довільного і являються лінійними обмеженими операторами, які діють в Z,

ряди в правих частинах (1) збігаються у рівномірної операторної топології при , , , ,

, , сильно неперервні при ,

,

оператор , де - оператор Коші однорідного рівняння

, (2)

є - оператор [1] з

Лема. Якщо власна функція крайової задачі

, , (3)

відносно операторів і , утворює узагальнений Жорданов ланцюг приєднаних функцій , скінченої довжини , то для достатньо малих крайова задача (1) має єдиний розв’язок.

Теорема. Якщо виконуються умови леми, то для крайової задачі (1) існує функція Гріна і для неї має місто лорановський розклад

,

де

де

- власна функція крайової задачі, спряженої до задачі (3); - узагальнений жорданів ланцюг, відносно операторів ,спряжений до ланцюга

- узагальнено обернений до ;

- розв’язки задач Коші

- розв’язки задач Коші


Використана література

М.М. Вайнберг, В.А. Треногин Теория ветвления решений нелинейных уравнений «Наука», М., 1969., 527с.




Подібні реферати:

Числові послідовності

План · Числові послідовності. · Границя, основні властивості. · Границя монотонної послідовності і функції. · Нескінченно малі і нескінченно великі величини, їх властивості. · Порівняння величин. · Еквівалентні нескінченно малі величини. Числові послідовності 1. Означення числової послідовності Дамо означення нескінченної числової послідовності та опишемо деякі з них. Означення. Нескінченною числовою послідовністю називається сукупність чисел, кожному з яких присвоєно певний порядковий номер (5.1) де числа - члени ...

Циліндр

Це фігура, що складається із двох кіл, що сполучають паралельним переносом і всіма відрізками, що з'єднують відповідні крапки цих кіл. Властивості: 1. Основи рівні й паралельні . 2. Твірні рівні й паралельні (із властивостей паралельного переносу, по властивості паралельних площин). Циліндр називається прямим, якщо твірні перпендикулярні основі. У прямому циліндрі : вісь = висота = твірна. Переріз: Осьовий переріз Бічна поверхня циліндра: L-довжина кола L=2ПR ...

Інтегруючий множник

1.Рівняння в повних диференціалах Якщо ліва частина диференціального рівняння є повним диференціалом деякої функції , тобто , і, таким чином, рівняння приймає вигляд то рівняння називається рівнянням в повних диференціалах. Звідси вираз є загальним інтегралом диференціального рівняння. Критерієм того, що рівняння є рівнянням в повних ди­ференціалах, тобто необхідною та достатньою умовою, є виконання рівності Нехай маємо рівняння в повних диференціалах. Тоді Звідси де - невідома функція. Для її визначення ...