Search:

Функція Гріна

Реферати » Математика » Функція Гріна

Нехай в банаховому просторі Z визначена крайова задача

(1)

де

для довільного і являються лінійними обмеженими операторами, які діють в Z,

ряди в правих частинах (1) збігаються у рівномірної операторної топології при , , , ,

, , сильно неперервні при ,

,

оператор , де - оператор Коші однорідного рівняння

, (2)

є - оператор [1] з

Лема. Якщо власна функція крайової задачі

, , (3)

відносно операторів і , утворює узагальнений Жорданов ланцюг приєднаних функцій , скінченої довжини , то для достатньо малих крайова задача (1) має єдиний розв’язок.

Теорема. Якщо виконуються умови леми, то для крайової задачі (1) існує функція Гріна і для неї має місто лорановський розклад

,

де

де

- власна функція крайової задачі, спряженої до задачі (3); - узагальнений жорданів ланцюг, відносно операторів ,спряжений до ланцюга

- узагальнено обернений до ;

- розв’язки задач Коші

- розв’язки задач Коші


Використана література

М.М. Вайнберг, В.А. Треногин Теория ветвления решений нелинейных уравнений «Наука», М., 1969., 527с.




Подібні реферати:

Біографія Піфагора – видатного математика та вченого

В VI столітті до нашої ери осередком грецької науки та мистецтва стала Іонія- група островів Егейського моря, які знаходяться біля берегів Малої Азії. Там у сім’ї золотих справ майстра Мнесарха народився син. За легендою, в Дельтах, куди приїхали Мнесарх з дружиною Парфенісою,- чи по справам, чи у весільну подорож оракул пророчив їм народження сина, який буде славитися віками своєю мудрістю, справами та красою. Бог Аполлон, вустами оракла, радить їм плити в Сірію. Пророцво збувається- в Сидоні Парфеніса народила хлопчика. І ...

Розв’язання задач на застосування векторів

Мета. Навчитися застосовувати вектори до розв’язання аналітичних, геометричних прикладних задач. Задачі аналітичного характеру. 1.Довести, що АВС рівнобедрений, прямокутний, якщо А(1;0), В(1;3), С(4;3). Розв’язання Знайти довжини сторін Оскільки АВ=ВС, то АСВ – рівнобедрений. 18=18, виконується теорема Піфагора, а значить АСВ – прямокутний. Отже, АСВ – рівнобедрений і прямокутний. 2.Дано вершити чотирикутника А(6; -1), В(5; 1), С(1; 2) і Д(2;-4). Довести, що АС+ВД. Задачі геометричного характеру. Знайти довжини ...

Схеми застосування інтеграла до знаходження геометричних і фізичних величин

План Визначення та обчислення об’єму тіла Обчислення об’єму тіла за площами його поперечних перерізів Обчилення об’єму тіла обертання Обчислення об’ємів 1.Обчислення об’єму тіла за його за площами поперечних перерізів На рис. 10.5 задано тіло, що обмежене зверху поверхнею , а також площинами , , , . Нехай треба визначити будь-яку площу перерізу тіла площиною, перпендикулярною до осі . Виділимо в тілі частинку, одержану двома паралельними перерізами, віддаленими один від одного на величину .Тоді об’єм виділеної частини ...