Search:

Функція Гріна

Реферати » Математика » Функція Гріна

Нехай в банаховому просторі Z визначена крайова задача

(1)

де

для довільного і являються лінійними обмеженими операторами, які діють в Z,

ряди в правих частинах (1) збігаються у рівномірної операторної топології при , , , ,

, , сильно неперервні при ,

,

оператор , де - оператор Коші однорідного рівняння

, (2)

є - оператор [1] з

Лема. Якщо власна функція крайової задачі

, , (3)

відносно операторів і , утворює узагальнений Жорданов ланцюг приєднаних функцій , скінченої довжини , то для достатньо малих крайова задача (1) має єдиний розв’язок.

Теорема. Якщо виконуються умови леми, то для крайової задачі (1) існує функція Гріна і для неї має місто лорановський розклад

,

де

де

- власна функція крайової задачі, спряженої до задачі (3); - узагальнений жорданів ланцюг, відносно операторів ,спряжений до ланцюга

- узагальнено обернений до ;

- розв’язки задач Коші

- розв’язки задач Коші


Використана література

М.М. Вайнберг, В.А. Треногин Теория ветвления решений нелинейных уравнений «Наука», М., 1969., 527с.




Подібні реферати:

Математика - відкриття впродовж століть

Математика - сукупна назва багатьох математичних наук. Основними з них є: арифметика, алгебра, геометрія і математичний аналіз. Слово "математика" використовували у Стародавній Греції приблизно в V ст. нашої ери послідовники легендарного Піфагора - так звані "піфагорійці". Походить воно від слова "матема", що означає "вчення" або "знання". Давні греки визнавали тільки 4 матема: вчення про числа (арифметику), вчення про фігури (геометрію), вчення про пропорції в природі та ...

Формула Ньютона – Лейбніца

Безпосередньо за означенням інтеграли легко обчислювати лише для най- простіших функцій, таких, як y = k x, y = x² Для інших функцій, наприклад тригонометричних, оьчислення границь сум ускладнюється. Виникає запитання: чи не можна обчислювати інтеграли іншим способом? Такий спосіб був знайдений лише у ХVII ст. англійським вченим Ісааком Ньютоном (1643 – 1727) і німецьким математиком Готфрідом Лейбніцом (1646 – 1716). Строге доведення формули Ньютон – Лейбніца дають у курсі матема-тичного аналізу. Ми лише проілюструємо ...

Основні поняття математичного програмування. Побудова моделі задачі лінійного програмування

1. Мета і предмет математичного програмування. Математичне програмування – складова частина прикладної математичної дисципліни «Дослідження операцій». До інших основних розділів цієї дисципліни відносяться теорія марковських випадкових процесів, теорія масового обслуговування, теорія ігор, методи сітьового планування. Мета дослідження операцій полягає в тому, щоб виявити оптимальний (найкращий) спосіб дій при розв’язанні задач керування системами, зокрема – економічними. Предметом вивчення математичного програмування є ...