Search:

Еліпсоїд

Реферати » Математика » Еліпсоїд

1) Еліпсоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням.

Рівняння (1) називається канонічним рівнянням еліпсоїда. Дослідження форми еліпсоїда проведемо методом паралельних перерізів. Для цього розглянемо перерізи даного еліпсоїда площинами, паралельними площині Оху. Кожна з таких площин визначається рівнянням z=g, де h – довільне дійсне число, а лінія, яка утвориться і перерізі, визначається рівняннями

+= 1 - ; z=h.

Дослідимо рівняння (2) при різних значення h.

Якщо >c, c>0, то + <0 і рівняння (2) ніякої лінії не визначають, тобто точок перетину площини z=h з еліпсоїдом не існує.

Якщо h=+ c, то += 0 і лінія (2) вироджується в точки (0; 0; с) і (0; 0; - с), тобто площини z=c і z=-c доторкаються до еліпсоїда.

Якщо >c, c>0, то += 1, де а1=а, b1=b, тобто площина z=h перетинає еліпсоїд по еліпсу з півосями а1 і b1. При зменшенні h значеннz а1 і b1 збільшуються і досягають своїх найбільших значень при h=0, тобто в перерізі еліпсоїда площиною Оху матимемо найбільший еліпс з півосями a1= а, b1 = b.

Аналогічні результати дістанемо, якщо розглядатимемо перерізи еліпсоїда площинами х=h і у=h.

Таким чином, розглянуті перерізи дають змогу зобразити еліпсоїд як замкнуту овальну поверхню. Величина а, b, с називаються півосями еліпсоїда. Якщо будь-які дві півосі рівні між собою, то триосний еліпсоїд перетворюється в еліпсоїд обертання, а якщо всі три півосі рівні між собою, - у сферу.

Отже даний еліпсоїд має півосі: а= 2,b=3? c=; його центр знаходиться в точці 0(1; -2; 3).

2) Одно порожнинний гіперболоїд

Однопорожнинним гіперболоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням

+= 1 - =1.

Рівняння (3) називається канонічним рівнянням однопорожнинного гіперболоїда.

Досліджують рівняння (3), як і в попередньому пункті, методом паралельних перерізів. Перетинаючи одно порожнинний гіперболоїд площинами, паралельними площині Оху, дістанемо в перерізі еліпси. Якщо поверхню (3) перетинати площинами х=h або у=h, то в перерізі дістанемо гіперболи.

Детальний аналіз цих перерізів показує, що однопорожнинний гіперболоїд має форму нескінченної трубки, яка необмежено розширюється в обидва боки від найменшого еліпса, по якому однопроджнинний гіперболоїд перетинає площину Оху.

Двопорожнний гіперболоїд

Двопорожнинним гіперболоїдом називаються поверхня, яка в деякій прямокутній системі координат визначається рівнянням

+= 1 - ; = - 1.

Перейти на сторінку номер:
 1  2 


Подібні реферати:

Невласні інтеграли

План Наближене обчислення означених інтегралів Формула прямокутників Формула трапецій Формула парабол (Сімпсона) 1. Наближені методи обчислення інтегралів В усіх випадках, коли розглянуті раніше методи знаходження первісних, не приводять до мети внаслідок того, що інтеграл не виражається через елементарні функції, і особливо тоді, коли підінтегральна функція задана таблицею (або графіком), доводиться повертатися до означення інтеграла як границі інтегральної суми. На основі цього існує ряд методів наближеного обчислення ...

Комплексні числа

При вивчення математики ми багато раз зустрічаємося з ідеэю розширення множини дійсних чисел .Наше представлення про число змінюється по мірі розширення кругу задач, які необхідно розв’язувати .Якщо для рахунку окремих предметів нам досить натуральних чисел, то, наприклад, для розв’язування рівнянь px+q=0, де p є N і q є N, натуральних чисел мало потрібні раціональні числа. В свою чергу раціональні чисел виявляється не досить для вимірювання довжини відрізків. Щоб довільному відрізку можна було надати довжини, необхідно ...

Діяльність українських вчених 20-30 рр. М.Кравчука, А.Кримського

“Моя любов — Україна і математика”,— це слова всесвітньо відомого математика Михайла Кравчука. На жаль, на батьківщині мало хто знає, що цей наш співвітчизник першим у світі спроектував комп’ютер (його науковим доробком, щоправда, скористався американець Атанасов), написав перший підручник з математики українською мовою, організував першу в нашій державі шкільну математичну олімпіаду. Завдяки його наставницькій діяльності Сергій Корольов став генеральним конструктором космічних ракетоносіїв, а Архип Люлька — конструктором ...