Search:

Інтегруючий множник

І формула має вигляд

3) Нехай .Тоді

І формула має вигляд

.

4) Нехай . Тоді

І формула має вигляд

.


Використана література:

Геращенко. Диференційні рівняння.

Хусаінов. Диференційні рівняння.

Перейти на сторінку номер:
 1  2 


Подібні реферати:

Інтегрування з допомогою заміни змінної. Інтегрування частинами

План Інтегрування частинами Інтегрування часток Заміна змінної 1. Інтегрування частинами Нехай і – диференційовані функції на Тоді або Звідси (8.16) Формула (8.16) називається формулою інтегрування частинами в невизначеному інтегралі. Користуючись формулою (8.16), рекомендується обчислення інтегралів від таких функцій : де –поліном , – раціональна функція . Описати всі можливі випадки застосування формули інтегрування частинами неможливо. Інтегруючи такі вирази, завжди виникає дилема : що взяти за, а що – ...

Системи лінійних диференціальних рівнянь із сталими коефіцієнтами. Поняття про стійкість розв’язків

План Поняття про стійкість розв’язків. Контрольні запитання: Які функції описують незбурений розв’язок? Який розв’язок системи називається стійким за Ляпуновим ? При яких умовах розв’зок називають нестійким ? Який розв’язок називають асимптотично стійким ? Дано рівняння y + y = t з початковою умовою y(0) = 1. Дослідити розв’язок, що задовольняє цю умову, на стійкість. При створенні приладів, конструкцій, машин, що відповідають певним умовам, треба знати, як поводитиметься об’єкт при невеликих перерозподілах сил зміні ...

Достатні ознаки збіжності рядів з додатніми членами, ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші

План Ознаки порівняння рядів з додатними членами Ознака Даламбера Радикальна ознака Коші Інтегральна ознака Коші 13.3. Ознаки порівняння рядів з додатними членами Збіжність чи розбіжність знакододатного ряду часто встановлюється шляхом порівняння його з іншим рядом, наперед відомо збіжним або розбіжним. В основі такого порівняння лежать наступні теореми. Нехай задані два ряди з додатними членами (13.4) (13.5) Теорема.1 Якщо члени ряду (13.4) не більші відповідних членів ряду (13.5), тобто , то із збіжності ряду ...